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Figure 2. Methodology in four steps. 

Electrochemical models could help in the development and

redesign of existing Li-ion batteries as well as to develop more

innovative concepts. These models can provide useful

information related to the internal mechanisms occurring in

these devices [1]. The aim of this work is to present a new tool

for optimization of the internal parameters of the cells by means

of the electrochemical models and design of experiments.

Electrochemical battery model

Applied methodology

Figure 1. P2D model. 
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This work presents a proof of concept of the methodology for the optimization of

selected design parameters of batteries using design of experiments.

This tool can help in the design of new cells, as it provides highly valuable insights

of the internal variables and characteristics of the cell (i.e. Energy density) as a

function of design parameters.

Governing equations [2]

Results and discussion

Two-level full factorial design [4]

A physics-based battery model implemented in COMSOL

Multiphysics® simulation software and developed by G. Plett et.

al. [1] is used for the analysis.

Charge conservation in the solid-phase

Charge conservation in the liquid-phase

Material balance of the electrolyte

Material balance for the AM particles

Pore wall flux (Butler-Volmer kinetics)
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Analysed system: The Doyle cell [3] has been used for this

work. This cell is composed of Carbon and Lithium Manganese

Oxide (LMO) electrodes and LiPF6 (EC:DMC) electrolyte.

Three-level full factorial design

• A 29 full factorial design has been used for

main factor/interaction identification and a

38 full factorial design for the

implementation of the Response Surface

Methodology (RSM).

• Models are solved using COMSOL

Multiphysics® software linked with the

LiveLink™ for MATLAB®. Parallel

computing is used (20 workers).

• Half Probability plots, main effects,

interaction effects linear regression

models and RSM have been analysed for

the energy density.

• Nelder-Mead simplex algorithm is used

for the optimization of Energy and Power

density.

Figure 3. Half probability plot.

Main effects and interaction effects for Energy Density

Figure 5. Interaction effects.

Response surface 

methodology (RSM) 
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Figure 6. a) 3D surface plot and b) contour plot for 

the most significant interaction for Em.

Desirability function 

(maximization) 
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Parameter
Low 

level (-1)

Mean 

level (0)

High

level (+1)

L_neg (m) 1.28 10-4 1.41 10-4 1.54 10-4

mr(-) 0.49 0.54 0.59

εs_neg (-) 0.471 0.518 0.57

εs_pos (-) 0.297 0.327 0.36

Rs,neg (m) 12.5 10-6 13.8 10-6 15 10-6

Rs,pos (m) 8.5 10-6 9.35 10-6 10.2 10-6

σpos (S m-1) 3.8 4.2 4.6

ce,0 (mol m3) 2000 2200 2400

Nelder-Mead simplex 

algorithm

Figure 4. Main effect.
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Optimized parameters Output responses

Response Doyle cell Optimized cell

Em 32 31

Pm 396 408

• Extrapolate the methodology to wider ranges of analysis

• Test the tool using different cycling regimes (i.e. pulses) and other chemistries

• Reduce the computational time implementing the central composite design

(CCD) or box-behkin design (BBD)

Future lines

The electric conductivity of the 

negative electrode is not significant 

in this analysed range and 

responses. Therefore, in the three-

level full factorial design that factor 

has been removed.
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