

Energy harvesting in a fluid flow using piezoelectric materials

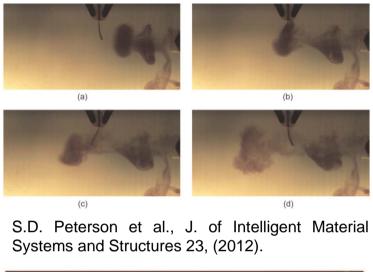
Michele Curatolo

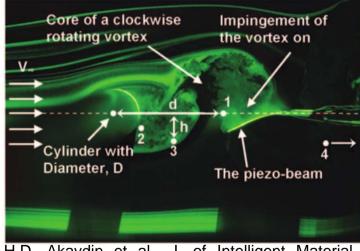
joint work with

Mario La Rosa and Pietro Prestininzi

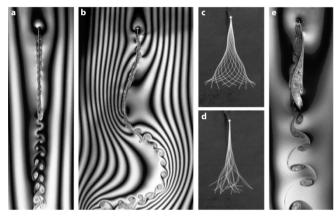
Engineering Dept., Roma Tre University, Italy

Solid vibrations in fluids

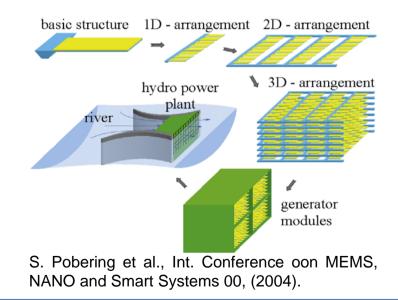




H.D. Akaydin et al., J. of Intelligent Material Systems and Structures 21, (2010).

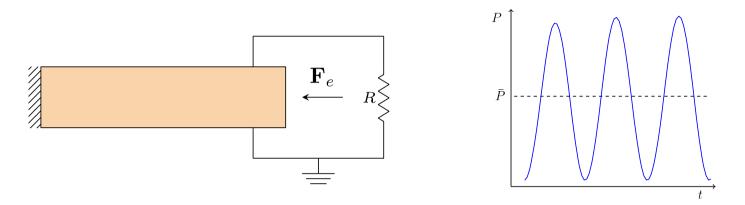


M.J. Shelley et al., Annu. Rev. Fluid Mech. 43, (2010).

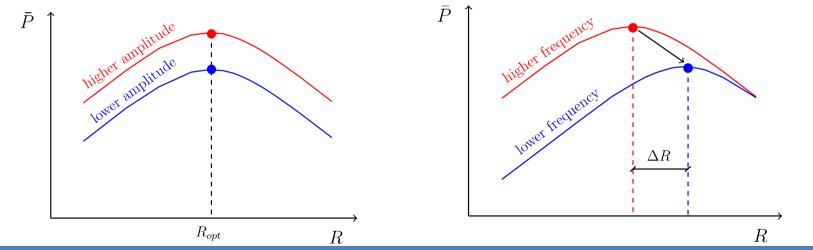


Piezoelectric materials

Piezoelectric solids develop an electric potential when compressed or stretched.

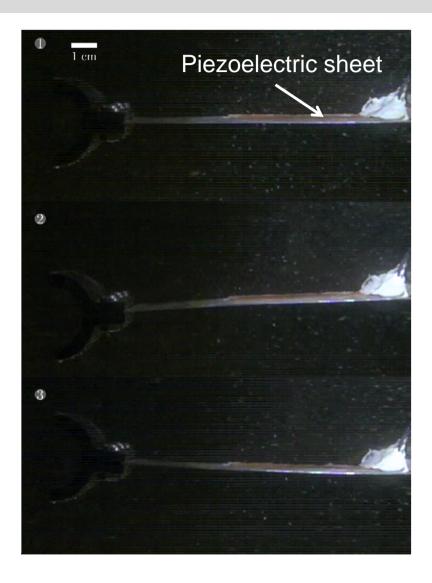


The optimal external load resistance depends on geometry and characteristics of force application.

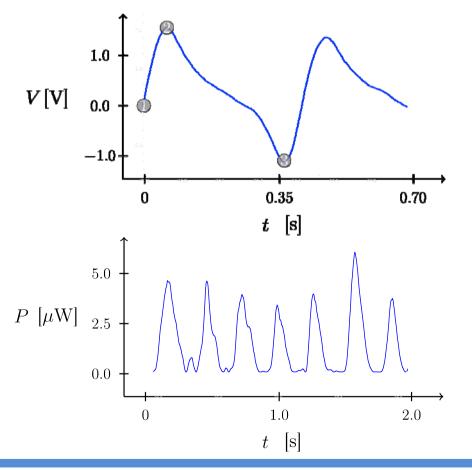


Energy harversting in fluid flows

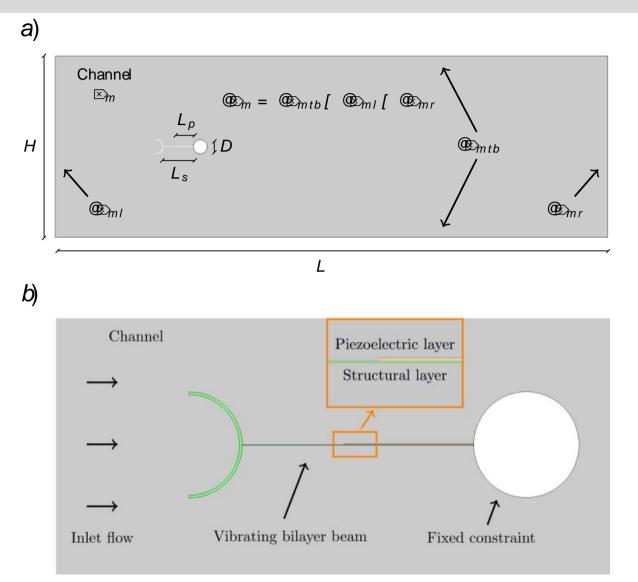
Energy harversting in fluid flows



The solid vibrates due to the fluid flow and generates an electrical potential which is harvested on an electrical load resistance.



Modeling FSI



Modeling FSI

Momentum and mass conservation for the fluid

$$\rho_f \dot{\mathbf{v}}_f + \rho_f \left(\nabla \mathbf{v}_f \right) \left(\mathbf{v}_f - \dot{\mathbf{u}}_m \right) = \operatorname{div} \mathbf{\Gamma} + \mathbf{f}$$

 $\operatorname{div} \mathbf{v}_f = 0$

Solid balance of forces

 $\rho \ddot{\mathbf{u}} = \operatorname{div} \mathbf{S}$

Gauss's law

 $\operatorname{div} \mathbf{D} = \rho_v$

Moving mesh

 $\operatorname{div}(\mathbb{A}\nabla\mathbf{u}_m)=0$

Constitutive prescriptions

The fluid is assumed incompressible and linearly viscous:

$$\Gamma = -p\mathbf{I} + 2\mu_f(\operatorname{sym}\nabla\mathbf{v}_f) - \frac{2}{3}\mu_f(\operatorname{div}\mathbf{v}_f)\mathbf{I}$$

Both structural and piezoelectric solid are assumed to be linear elastic:

$$\mathbf{S}^e = \frac{Y_s}{1 + v_s} \mathbf{E} + \frac{Y_s v_s}{(1 + v_s)(1 - 2 v_s)} \operatorname{tr}(\mathbf{E}) \mathbf{I}$$

 $\mathbf{S}^{e} = \mathbb{C}\mathbf{E} - \mathbf{e}^{T}\mathbf{E}_{el}$

The electric displacement in the piezoelectric solid:

 $\mathbf{D} = \mathbf{e} \, \mathbf{E} + k_o \, \mathbf{k} \, \mathbf{E}_{el}$

Principal boundary conditions

At the fluid-solid interface we assign:

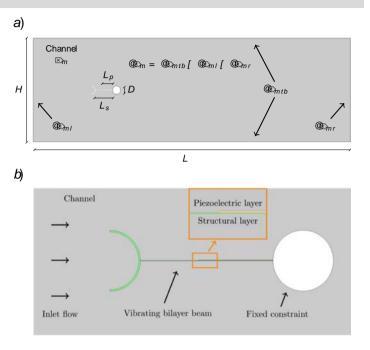
$$\mathbf{T}\mathbf{n} = -\Gamma\mathbf{n}, \quad \mathbf{v}_f = \dot{\mathbf{u}}_m = \dot{\mathbf{u}}_s \quad \text{on } \partial\Omega_{sm} \times \mathscr{T}$$

At the channel walls the mesh is fixed:

$$\mathbf{u}_m = 0 \quad \text{on } \partial \Omega_m \times \mathscr{T}$$

A inlet condition on the left wall of the channel:

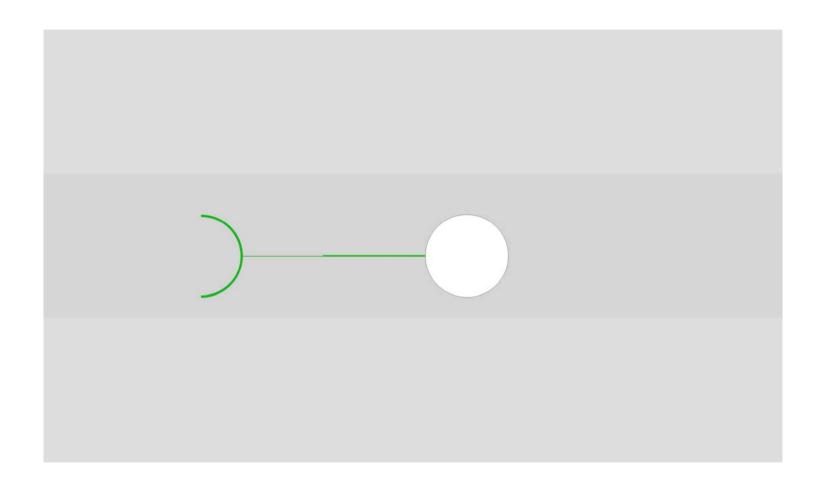
$$\mathbf{v}_f = (1 - \exp(-t/\tau))Uf(Y)\mathbf{e}_1 \quad \text{on } \partial\Omega_{ml} \times \mathscr{T}$$



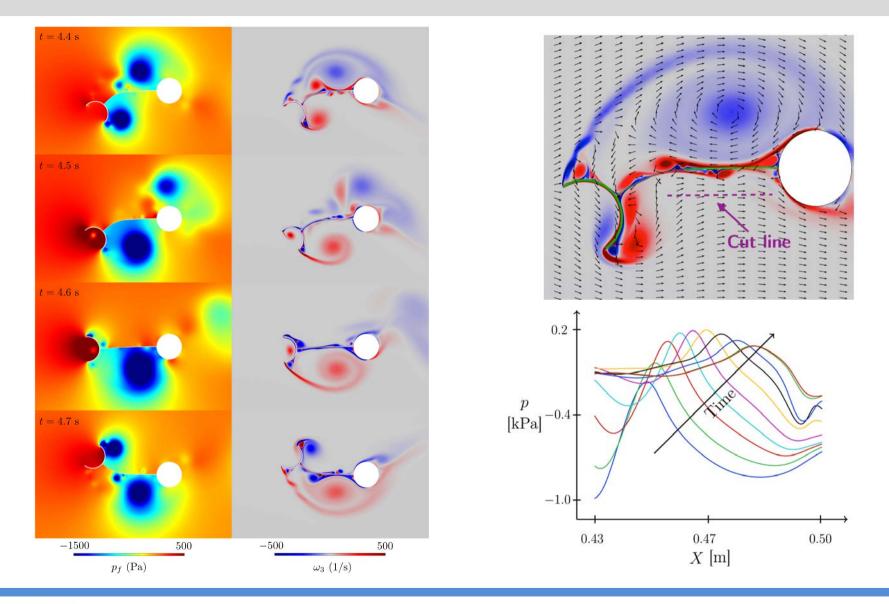
At the top boundary of the piezoelectric solid we assign an electrical $V = \tilde{V}$: ial n such that it holds:

$$\int_{\partial\Omega_{spt}} \dot{\mathbf{D}} \cdot \mathbf{n} \, ds = \frac{\tilde{V}}{R}$$

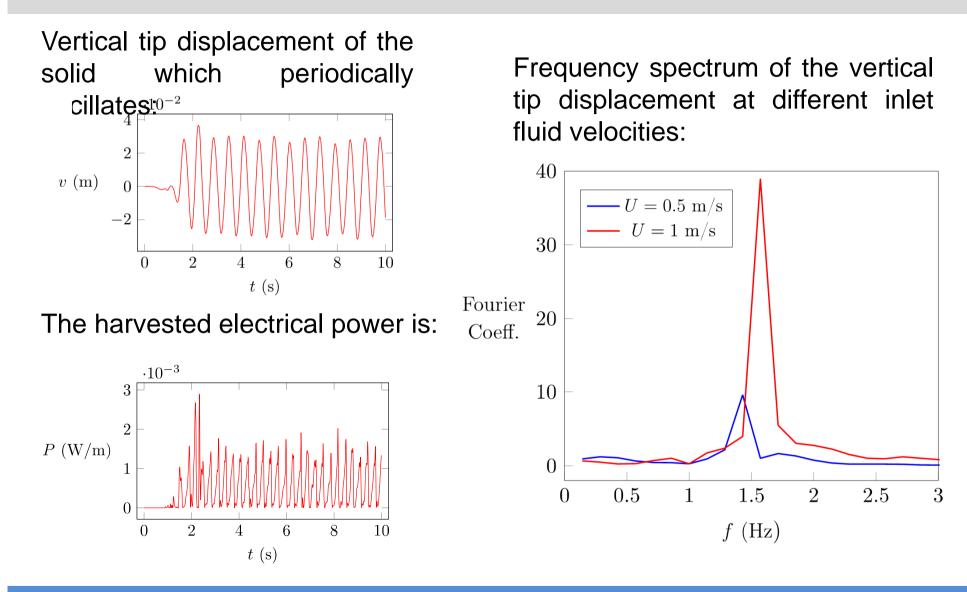
Results of simulations



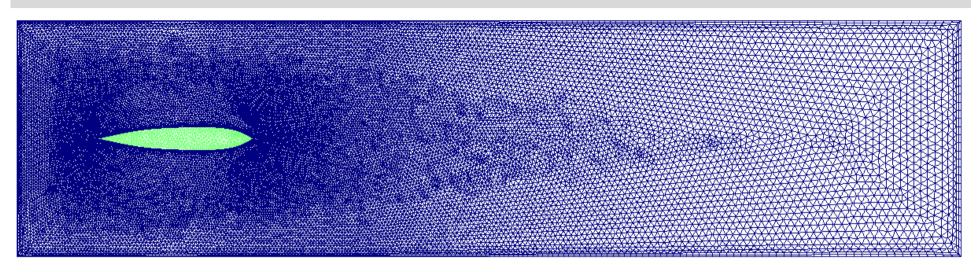
Results of simulations



Results of simulations



Remeshing



- M. Curatolo and L. Teresi. The Virtual Aquarium: Simulations of Fish Swimming, *European* COMSOL *Conference*, Grenoble, France (2015).
- M. Curatolo and L. Teresi. Modeling and simulation of fish swimming with active muscles. *Journal of Theoretical Biology*, (2016).
- https://www.comsol.com/blogs/studying-the-swimming-patterns-of-fish-withsimulation/
- Download and play with the model! https://www.comsol.it/community/exchange/501/

Remeshing

We need both moving mesh to solve the FSI for short time intervals, and re-meshing to track the long swimming path we aim at simulating.

