

Experimental and modelling study of the filtering capacity of green wall species

Tess Ysebaert¹, Griet Walpot¹, Siegfried Denys¹

1. Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Belgium

The air we breathe

Sources: (1) EPA; (2) ICAO

The air we breathe

Nature-based solutions

Abhijith, K. V. et al. (2017). Atmospheric Environment.

Quantitative impact of urban green is unknown:

- Too simplified models
- Large uncertainties in deposition velocity and resupension fraction

Model framework for PM deposition on urban green → particle dispersion

Air flow model

- Bulk flow: $k-\omega$ turbulence model
- Vegetation: porous medium (spatial averaging)
 - Brinkman equations with Darcy-Forchheimer drag
 - Input: porosity ($\rho \sim 0.9$), permeability ($\kappa \sim 10^{-5} 10^{-6} \text{ m}^2$), Forchheimer drag ($\beta_F \sim 0.5 5 \text{ kg m}^{-4}$)

R² of 0.98 for both velocity and pressure

Particle dispersion model

Lagrangian particle tracing:

$$\frac{d}{dt}(m_p u_i) = F_{total}$$

- Assumption: only drag force (Stokes model)
- Input:

Variable	Value	Unit
Aerodynamic diameter	2.5	μm
Density	820	kg m ⁻³
Number of particles	10,000	

Animation

Impact of configuration (1)

No plants

Plants with ρ = 0.9955

Impact of configuration (2)

Plants with ρ = 0.9964

Plants with ρ = 0.9973

Conclusions and future

The complex interaction between plant-atmosphere can be studied with Comsol Multiphysics®

Future:

- Inclusion of particle removal by vegetation by adding a sink term to the Lagrangian framework
- Spatial averaging method was validated by Koch et al.
 (2018) → further validation with real PM emissions generated with an experimental setup
- Determine the driving parameters of PM deposition with the model framework

Experimental and modelling study of the filtering capacity of green wall species

Tess Ysebaert¹, Griet Walpot¹, Siegfried Denys¹

1. Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Belgium

