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Introduction  

 Frequency range: 

0.3 – 10 THz. 

 Wavelength range: 

1000 – 30 µm. 

 Energy range: 1.2 – 

41 meV.  

 Terahertz (THz) waves are also known as sub-millimeter waves or T-rays. 

 It was not much explored until early 1980s due to unavailability of efficient THz 

sources and detectors. 

Fig. 1 Electromagnetic wave spectrum showing THz region 

Ref. 1 - http://blog.bahaykuboresearch.net/2011/10/04/intense-terahertz-emission-from-undoped-gaasn-
type-gaas-and-inasalsb-structures-grown-on-si-substrates/ 



Properties and Applications 

 Low photon energy: cannot 

photoionise biological tissues like X-

rays. 

 Less effected by Mie scattering: it is 

transparent to most dry dielectrics. 

 Extreme water absorption: cannot 

penetrate human body like 

microwaves. 

 Detects molecule specific vibrational 

and rotational transition. 

 

 

 

Fig. 2 Applications of THz waves in different fields 

Ref. 2- http://www.imp.tu-
darmstadt.de/forschung_imp/ont_imp/ntt.de.jsp 



Proposed Waveguide Model 

 T-rays cannot propagate long distance in 

atmosphere due to extreme water 

absorption. 

 Metallic hollow core waveguides offer THz 

propagation with low loss. 

 In proposed model, two interface layers of 

Gallium-doped zinc oxide (GZO) and 

Indium doped tin oxide (ITO) has been 

added. 

 Addition of interface layers solve the 

problem of ohmic losses. 

 The thicknesses of the layers have been 

optimized. 

 
 
 

 

 The attenuation for the core-confined 

mode has been calculated  using : 

 

 

where, unm is the mth root of nth order 

Bessel function, λ is the operating 

wavelength, ɑ is the radius of core and n 

is the complex effective mode index. 
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Fig. 3 2D structure of proposed model 



Simulation  
The proposed 2D structure was simulated in RF module. 

 
 

Physics (EMW) and Study (Modal 
analysis) selected 

Parameters including proper n 
and k values and dimension 

defined 

Geometry created and material 
assigned to different domain 

Computation 

Extremely fine mesh created  

Thickness of interface 
layers optimized 

Geometry  

Mesh  

Result 



Results  

0.5 THz 1 THz 

2.5 THz 2 THz 

Layer  Material Optimized 
thickness 
(µm) 

Cladding 1 GZO  5 

Cladding 2 ITO 8 

Cladding 3  Copper 1 Fig. 4 2D surface plot of low loss mode in THz waveguide at (a) 0.5 THz 
(b) 1 THz (c) 2 THz and (d) 2.5 THz  

 

Table 1 Thickness obtained after 
optimization 
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Results  

Fig. 6 Plot of core-confined 
mode loss at different 
frequencies  

 

Fig. 5 Variation of 
effective mode index 
with  operating 
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Results  
 In order to optimize the thickness, the core-confined loss for different thicknesses 

have been calculated at 1 THz. 

 The loss decreased as the thickness was reduced, and after 10 µm the loss almost 

saturated. 

Fig. 7 Plot of loss for different thickness of GZO layer at 1 THz 



Conclusions and Future Work 

 The simulated structure is able to produce core-confined mode up to 2.25 THz. 

 The thicknesses were optimized and hence the structure possesses minimal fabrication 

complexity. 

 The waveguide can be used for THz applications such as probe for THz sensing and imaging.  

 The structure can be simulated with different set of interface layers to further reduce the 

loss. 

 The operating bandwidth can be improved by adding more interface layers. 

 In future, the structure will be fabricated and characterized by obtaining other losses such as 

scattering loss, dispersion and coupling loss using THz time domain spectroscopy. 
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