Surface Morphologies of Electrospun Fibers Induced by Electric Field
Na Meng¹, Masha Li¹, Xuan Dong¹, and Yongchun Zeng²
1. School of Fashion Engineering, Shanghai University of Engineering Science, Shanghai, China
2. College of Textile, Donghua University, Shanghai, China

Introduction

The electric field plays a key role in the formation of fibers during electrospinning process. The electric field strength and shape caused by the applied voltage between the spinneret and collector governs the electrospinning process.

In this study, a comprehensively-designed and correctly-implemented analysis was carried out to investigate the effects of electric field on jet behavior and fiber morphology. Both working distance and applied voltage, respectively, were adjusted to manipulate the electric field shape and strength. The three-dimensional electric fields were simulated to understand the electric field distribution.

Results

The directions of the electric fields with different working distances were different, a shorter working distance creates a more deflected electric field near the spinneret. With the increasing of working distance, the electric field distribution in the central area of the spinneret becomes more uniform, and the electric field intensity decreases with working distance increasing.

Conclusions: This work describes investigations on the effects of electric field on jet behavior and resultant fiber morphology during the electrospinning process, using both experimental and simulation methods. The simulation results show that varying the working distance and applied voltage will change the electric field shape and strength, respectively.