# A CLINICAL AND COMPUTATIONAL STUDY ON HAEMODYNAMICS

ABHIRUP ROY CHOUDHURY<sup>1</sup>, KRITTIKA DASGUPTA<sup>2</sup>, ABHIJIT CHANDA<sup>1,2</sup>, DEBABRATA NAG<sup>1</sup>

<sup>1</sup>DEPARTMENT OF MECHANICAL ENGINEERING & <sup>2</sup>SCHOOL OF BIOSCIENCE AND ENGINEERING

# JADAVPUR UNIVERSITY KOLKATA

# HAEMODYNAMICS AND ITS NEED

Study of the flow of blood through arteries from a fluid mechanics point of view



Needed to enrich the knowledge of the blood flow pattern due to recent uprise in cardiac diseases



# **STENOSIS**

Abnormal narrowing of blood

vessels

- Deposition of
  - cholesterol

and other fatty matter



# **CLINICAL STUDY**

# Doppler Ultrasound Image of the <u>CAROTID ARTERY</u> of 130 patients of varying age:

> To determine the location of the stenosis



# **BLOOD AS A FLUID**

- Newtonian for large arteries, including the common carotid artery
- Non-Newtonian for narrower channels
- Density : 1050 Kg/m<sup>3</sup>
- Dynamic viscosity: 0.00345 Pa.s

# **MODELLING USING COMSOL**

**VERSION: COMSOL 3.5a** 

**IFLUID MECHANICS MODULE** 

**INCOMPRESSIBLE NAVIER-STOKES SECTION** 

#### **MODELLING THE GEOMETRY** (AXIS-SYMMETRIC MODEL) Assumption: The artery is a long straight pipe





DIAMETER(*D*<sub>0</sub>)=0.0057 m

**CURVED GEOMETRY** 

CONSTRICTION= 62% of the radius





**RECTANGULAR GEOMETRY** 

# ASSUMPTIONS

The artery wall is rigid

Blood flow is

- Newtonian
- 🗆 Laminar
- Steady-state
- Incompressible



# GOVERNING EQUATIONS & BOUNDARY CONDITIONS

**Incompressible Navier-Stokes Equation:** 

 $\rho(\mathbf{u}.\nabla)\mathbf{u} = \nabla \cdot [-p\mathbf{I} + v(\nabla \cdot \mathbf{u} + (\nabla \cdot \mathbf{u})^T]$ 

 $\nabla \mathbf{u} = \mathbf{0}$ 



### MESHING IN COMSOL



- Free mesh using triangular elements
- Adaptive refinement near the constriction



#### **SOLVER USED**

#### SOLVER TYPE: STATIONARY NAME OF SOLVER: DIRECT(PARDISO)

## **SUMMARY OF VALUES USED**

| FLUID PROPERTIES              | VALUES                 |
|-------------------------------|------------------------|
| DENSITY                       | 1050 kg/m <sup>3</sup> |
| DYNAMIC VISCOSITY             | 0.00345 Pa.s.          |
|                               |                        |
| <b>GEOMETRICAL PROPERTIES</b> | VALUES                 |
| DIAMETER OF ARTERY            | 5.7 mm.                |
| MAXIMUM CONSTRICTION          | 62%                    |
|                               |                        |
|                               |                        |

| FLOW PARAMETERS | VALUES              |
|-----------------|---------------------|
| REYNOLDS NUMBER | 100, 400, 800, 1000 |

# RESULTS

### Close similarities between clinical and computational results



# **RADIAL VELOCITY PLOT**





#### **REATTACHMENT LENGTH VS. REYNOLDS NUMBER**



• The reattachment length increases with increase in *Re* 

•The length of reattachment is 10% higher for the rectangular stenosis than the curved one

#### HIGHER REATTACHMENT LENGTH Direction of flow HIGHER RATE OF PROPAGATION OF STENOSIS



**Direction of propagation** 

**Of Stenosis** 









•Shows that irreversible pressure rise increases with increase in *Re* 





•Shows that irreversible pressure rise increases with increase in *Re* 

•Shows that the pressure rise is higher for the rectangular stenosis by 23%.

HIGHER LOAD ON HEART

# CONCLUSIONS

Severity increases with increase in Reynolds number i.e. increase in blood velocity.

> The length of the stenosis gradually increases.

➢A rectangular constriction is more severe than a curved one.

>A curved geometry gradually approaches a rectangular shape



# THE CONDITION ESSENTIALLY WORSENS WITH TIME

#### REFERENCES

- 1. Ku D.N., Blood flow in arteries, Ann. Rev. Fluid Mech, 29, 399-434 (1997)
- 2. Wootton D.M. and Ku D.N., Fluid mechanics of vascular systems, diseases, and thrombosis. *Annu. Rev. Biomed. Eng*, **01**, 299-329 (1999)
- 3. Johnston P.R. and Kilpatrick D., Mathematical modeling of flow through an irregular arterial stenosis, *Journal of Biomechanics*, **24**, 1069-1077 (1991)
- 4. Anderson H.I., Halden R., Glomsaker T., 2000, Effects of surface irregularities on flow resistance in differently shaped arterial stenosis, *Journal of Biomechanics* **33**, 1257-1262 (2000)
- 5. Tang D., Yang C., Ku D.N., A 3-D thin-wall model with fluid-structure interaction for blood flow in carotid artery with symmetric and asymmetric stenosis, *Computers and Structures* **72**, 357-377 (1999)
- Bertolotti C., Deplano V., Three-dimensional numerical simulation of flow through stenosed coronary bypass, *Journal of Biomechanics*, **33**, 1011-1022 (1999)
- Mandal P.K., An unsteady analysis of Non-Newtonian blood flow through tapered arteries with stenosis, *International Journal of Non-Linear Mechanics*, 40, 151-164 (2005)



# **CAROTID ARTERY**







26