

Presented at the COMSOL Conference 2010 Boston

Modeling Isogrid Buckling

J. Lavin¹ E. Gutierrez-Miravete²

¹UTC-Pratt & Whitney, East Hartford, CT, USA ²Rensselaer at Hartford, Hartford, CT, USA

1

10/8/2010

COMSOL Conference 2010

- Isogrid Geometry
- Analytical Solution
- Analysis Approach
- Model Creation And Meshing
- Modeling Results
- Mode Shape Verification
- Rib Buckling
- Conclusions

h = c

- Created by individual equilateral triangular panels
 - Triangle geometry defined by height (h) and side (s)
- Based on NASA report CR-124075
 - Geometry is reducible to unit width panel for all h and s
 - Maintain bending (D) and tensile (K) stiffness
 - E^{*} and t^{*} provide equivalent stiffness

- Simple supported plate
 - Based on E^{*} and t^{*} calculations
- · Calculate critical load required for elastic instability
 - Loads calculated for individual modes
 - M controls load direction half wave
 - N controls load perpendicular half wave
- 3 load cases capture geometry variation

10/8/2010

COMSOL Conference 2010

4

- Verify numerical approach with plate model
 - 4.618" (a) x 4.000" (b)
 - E^{*} and t^{*} used in analytical solution
- Model isogrid panel
 - 4.618" (a) x 4.000" (b)
 - Verify E^{*} and t^{*} methodology
 - Represents configuration specific geometry
- Verify predicted mode shapes match analytical solution

Model Creation And Meshing

- All geometry developed from simple blocks
 - Ribs rotated in specific locations to create triangular pattern
 - Arrays created to reduce rib modeling time
- Composite object created with ribs
 - Allowed simplified trimming
- Auto-mesh used to create rapid mesh study
 - Verify mesh density for complex mode shapes
 - "Coarser" mesh provided accep

- Eigen-buckling analysis completed using unit load
 - Calculated eigenvalue is critical buckling load
- Analytical solution compares well with numerical analysis
 - Analytical plate calculated using E^{*}t^{*} properties
 - Numerical plate model compared using E^{*}t^{*} properties
 - Isogrid model comparison based on model geometry and E₀

	Increased Complexity				No increase in error		*	
m	n	Calculated	Plate	Percent Error	Delta	Isogrid	Percent Error	Delta
1	1	1882	1858	-1.28	-24	1946	3.39	64
2	1	2458	2431	-1.11	-27	2543	3.44	85
3	1	4102	4063	-0.94	-39	4223	2.96	121
4	1	6492	6435	-0.87	-57	6568	1.18	76
2	2	7529	7433	-1.27	-96	7620	1.21	91
	199	Counter Stati		Average	-48		Average	88

Mode Shape Verification

- First 5 mode shapes verified
 - Analytical solution compared to numerical prediction
 - Analytical shapes based on values of m and n

- Model created by scaling rib composite object
- Study completed for 4 different rib heights
 - Rib height (d) varied
 - Load applied to both edges a and b
- Parameter α used for comparison of E^{*}t^{*} applicability

- Analytical critical buckling load matches numerical approximation
 - Plate model critical buckling load off 1.3%
 - Isogrid model critical buckling load off 3.5%
- Model accuracy did not decrease with displacement complexity
 - Mesh density appropriate to calculate mode shape
- Correct buckling mode shapes produced
 - Verified with both plate and isogrid model
- Verified E^{*}t^{*} design approach for use on plate buckling
 - Design limitation defined based on non-dimensional parameter

