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‘Traditional’ modeling approaches in 
medicine and biology 

 ODE-based lumped compartmental models 
• Mass transport in artificial organs / body systems / 

intracellular 
• Chemical reactions involving fluids and electrolytes 
• Heat transport in the body 
• Electrostatic discharge from the body 
• … 

 Limitations 
• Many underlying assumptions 
• Constrained to specific operating conditions 

http://www.sh.lsuhsc.edu/
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Arteriovenous carbon dioxide removal 
model schematic 

Fig. 1
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Mathematical model description 
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Carbon dioxide removal simulations 
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Clinical application 

http://www.sh.lsuhsc.edu/
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Recent modeling approaches in  
medicine and biology 

 Single physics finite element 
analysis 
• CFD of blood flow in blood 

vessels and pumps 
• CFD of gas transport in the 

lungs 
• Heat transport in organs 
• Fluid-structure interaction in 

the brain 
• Musculoskeletal stress and 

strain 
 Highly focused studies 

http://www.sh.lsuhsc.edu/
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Artificial kidney 

http://www.sh.lsuhsc.edu/
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Dialysis membrane technologies 

http://www.sh.lsuhsc.edu/
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Hemodiafilter Design 

HF: 240×10-6 m inner diameter 
       0.1 to 0.2 m in length 

http://www.sh.lsuhsc.edu/
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COMSOL example – separation  
through dialysis 

 COMSOL model library 
 Axisymmetric hollow 

fiber geometry 
 Solute transport 

through the membrane 
by diffusion 

http://www.sh.lsuhsc.edu/
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Diffusive vs. convective transport 

 Hemodialysis (traditional) 
• Focus on diffusive transport 
• Lower porosity membranes 
• Removal of small, readily diffusible solutes thought 

solely responsible for toxicity of renal failure 
 Hemofiltration 

• Focus on convective transport 
• Higher porosity membranes 
• Removal also of larger solutes (‘middle molecules’) 

now known to contribute to toxicity of renal failure 
 Combined therapies now common 

http://www.sh.lsuhsc.edu/
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Governing principles for modeling 

 Small channel blood flow (r ≈ 120 µm) 
• Applied flows/pressures to blood side 
• Non-Newtonian properties of blood 

 Blood viscosity varies 

• Hemoconcentration 
 Axial alterations in blood density and viscosity 

• Blood cell skimming behavior (Fahraeus-Lindqvist) 
 Radial alterations in blood density and viscosity 

 Presence of proteins in blood phase 
• Influence convection from osmotic pressure 

• Additional axial alterations in density, viscosity and 
osmotic pressure 

http://www.sh.lsuhsc.edu/
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Governing principles for modeling 

 Solute characteristics 
• Partitioning between plasma and red blood cell 

• Partial solute rejection at membrane surface 

 Membrane factors 
• Interaction of convective and diffusive transport 

• Concentration polarization of blood cells, protein 
and partially reflected smaller molecules 

• Interaction of hydraulic pressure and osmotic 
effects to produce forward filtration and 
backfiltration 

http://www.sh.lsuhsc.edu/
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Governing principles for modeling 

 Dialysate factors 
• Applied fluid flows and pressures 

• Concentration of solutes in dialysate 

 Dialysate has cooler temperatures than blood 
• Heat loss to environment 

• Temperature dependence of blood density and 
viscosity 

 Ionic charge on proteins and some solutes 
• Protein rejection at membrane 

• Impairment of solute transport across membrane 

http://www.sh.lsuhsc.edu/
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Previous mathematical models 

 Single compartment models 
 Multiple compartment models 
 One-dimensional computational models 
 Two/three-dimensional computational model 

• Finite element analysis 

http://www.sh.lsuhsc.edu/
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Single compartment analytical model 

 Single blood and dialysate 
mass balance compartments 

 Used a length-averaged mass 
transfer coefficient for solutes 
• Dependent upon operating 

conditions 
 Overestimated filtration rate vs. 

experimental data 
• Could not account for 

concentration polarization or 
membrane rejection 

 Unable to account for 
processes such as backfiltration Pallone TL: Kidney Int 1988;33:685-98 

Pallone TL: Kidney Int 1989;35:125-133  

http://www.sh.lsuhsc.edu/
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Multiple compartment analytical model 

 Accounted for local fluid 
balance changes (axially only) 
• Pressure drops 
• Viscosity 
• Osmotic effects 

 Addressed fluid fluxes only 
• Did not include convective or 

diffusive solute transport 
 Described backfiltration not 

possible in simpler models 
 Does not account for radial 

effects 
• Concentration polarization 

 Fiore GB: Contrib Nephrol 2005;149:27-34 

http://www.sh.lsuhsc.edu/
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One-dimensional computational models 

 Ordinary differential 
equations solved 
numerically along the axis 
• Included local viscosity, 

osmotic pressure, etc. 
 Include solute transport 

with convection-diffusion 
interaction 
• Formulas of Zydney 

(extension of Villarroel) 
• Flat membrane 

 Included approximations of 
boundary layer effect on 
mass transfer coefficient 
• Able to account for 

concentration polarization 
 

Legallis C: J Membr Sci 2000;168:3-15 
Raff M: J Membr Sci 2003;216:1-11  

http://www.sh.lsuhsc.edu/


21 

Limitations of previous models 

 Simplifying assumptions 
• Overall mass transfer coefficients 
• Approximations to boundary conditions 

 Geometrically naïve 
• Single compartments naïve to axis and radius 
• Multiple compartments naïve to radius, and approximate axial 

conditions 
• One dimensional computational models approximate radial 

conditions 
• Membranes modeled as boundaries only 

 Biased estimates of convection-diffusion interaction 
• Ignored in previous models 
• Based on older flat membrane analysis in advanced models 

 Model geometry based on hollow fiber membranes 

http://www.sh.lsuhsc.edu/
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Hollow Fiber Geometry Modeling 
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Dialysate: 
Navier-Stokes 

Membrane: Brinkman 

Blood: 
Non-Newtonian 

Heat: 
Heat 

transport 

COMSOL Application Modes 

Protein: 
Convection- 

Diffusion 
 

Solute: 
Convection- 

Diffusion 

http://www.sh.lsuhsc.edu/
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Non-Newtonian Blood Flow 

Carreau equation: 

http://www.sh.lsuhsc.edu/
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Fahraeus-Lindqvist Effect 

1 2

( 1)( 1)
( )

2

2 2

1 2 ( 1)( 2)

where

11.1
17.3

.206

n n n

n n n
H r H

r r r

n n n n n n

n
H

 

 
 

 
   

    

 


http://www.sh.lsuhsc.edu/


27 

Colloid Osmotic Pressure 
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Solute reflection 

Cbldin Cdiaout 

Cdiain Convective flux 

us = um·(1-σ) 

http://www.sh.lsuhsc.edu/
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Protein concentration in blood phase 

http://www.sh.lsuhsc.edu/
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Ultrafiltration rate validation 
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Hemofiltration vs dialysis 

http://www.sh.lsuhsc.edu/
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Solute clearance during dialysis 

Vbldin Vbldout 

Historical assumption: 

Vdiaout Vdiain 

Vdiain = Vdiaout → zero net ultrafiltration → diffusive clearance only 

Pressure drop 

Recent recognition: 

Internal filtration Backfiltration 

Additional 
convective 
clearance 

http://www.sh.lsuhsc.edu/
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Internal filtration / backfiltration 

http://www.sh.lsuhsc.edu/
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Sensitivity of fluid flux to the  
protein diffusion coefficient 
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Dialysate: 
Navier-Stokes 

Membrane: Brinkman 

Blood: 
Non-Newtonian 

Heat: 
Heat 

transport 

Expanding the application modes 

Protein: 
Convection- 

Diffusion 

 
Protein charge: 

Electrostatics 

Solute: 
Convection- 

Diffusion 

Solute charge: 
Electrostatics 

Membrane 
charge: 
Electrostatics 

http://www.sh.lsuhsc.edu/
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Modeling the circadian rhythm – existing 
ordinary differential equation models 

• Cell shape 
• Cytoplasmic streaming 
• Intracellular organelles 
• DNA binding kinetics 

• Momentum transport 
• Diffusive transport 
• Convective transport 
• Chemical reactions 

http://www.sh.lsuhsc.edu/
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In closing 

 Multiphysics modeling has not been widely exploited 
in medicine and biology 

 Most modeling to date has been in the application of 
technology to medical treatments, such as artificial 
organs and tissue heating 

 Little multiphysics finite element analysis has been 
applied to study of underlying physiological and 
cellular processes 

http://www.sh.lsuhsc.edu/



