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LSl ‘Traditional’ modeling approaches in

Health

o medicine and biology

* ODE-based lumped compartmental models

* Mass transport in artificial organs / body systems /
Intracellular

- Chemical reactions involving fluids and electrolytes
* Heat transport in the body
* Electrostatic discharge from the body
= Limitations
* Many underlying assumptions
» Constrained to specific operating conditions
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LSU Arteriovenous carbon dioxide removal

Health

B model schematic
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o Mathematical model description

t
JPCO
Qalv = '(|).|:D|_COZ : Ax 2 _CavaOZ .VE :|dt
t
JPCO
Qpui, = -[ |:(CpUICOZi1 ~CCO, ) Fou = DLCO; X Z}dt
0

Qtis =

O ey —+

[vco2 _p,Co,. 0 }dt

dt

t
Qcap = J.|:(CartC02 - CvenCOz)- Fcap + DTCOZ . @:‘
0

t Fdevij DDC02 épCOzij
ledi :_([ (CartCOZ _CdevCOZ )i,j ) n, - N, .ng ’ Py dt

t F PCO
anS- = J. (Cincoz - COutC02 )i J . 9as; | + DDCOZ . 2 ; dt
i g ' ng nb . ng 0’)(


http://www.sh.lsuhsc.edu/

LS

Health
Sciences
Center

Carbon dioxide removal simulations

CO2 removal (fraction of VCO2)

CO2 removal (fraction of VCO2)

Membrane DLCO2 = 0.3
Gas:Blood =3
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CO2 removal (fraction of VCO2)
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L3Ul Recent modeling approaches in

Health

o medicine and biology

= Single physics finite element
analysis

« CFD of blood flow in blood
vessels and pumps

« CFD of gas transport in the
lungs

» Heat transport in organs

* Fluid-structure interaction in
the brain

* Musculoskeletal stress and
strain

= Highly focused studies
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5 Artificial kidney

In the dalyzer, wasle products
Blood is pumped from the arteriovenous fistula info a dialyzer ey lmmﬁa blood 1I'|E|:||_|gh

an artificial mambrans into
a fluid called the dialysate

Artificial
mambrans

Dialysate

Furified blood is pumped from the dialyzer into the arteriovenous fistula
Hemodialysis
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o Dialysis membrane technologies
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o Hemodiafilter Design

HF: 240x10® m inner diameter
0.1t0 0.2 min length
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LSl COMSOL example — separation

Health

o through dialysis

 COMSOL model library ~ seccrcoms

= Axisymmetric hollow
fiber geometry

= Solute transport
through the membrane
by diffusion

OOOOO
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o Diffusive vs. convective transport

= Hemodialysis (traditional)
* Focus on diffusive transport
* Lower porosity membranes

- Removal of small, readily diffusible solutes thought
solely responsible for toxicity of renal failure

= Hemofiltration
* Focus on convective transport
» Higher porosity membranes

« Removal also of larger solutes (‘middle molecules’)
now known to contribute to toxicity of renal failure

= Combined therapies now common
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o Governing principles for modeling

= Small channel blood flow (r = 120 um)
 Applied flows/pressures to blood side
* Non-Newtonian properties of blood
+ Blood viscosity varies
* Hemoconcentration
+ Axial alterations in blood density and viscosity
* Blood cell skimming behavior (Fahraeus-Lindqgvist)
+ Radial alterations in blood density and viscosity
= Presence of proteins in blood phase
* Influence convection from osmotic pressure

- Additional axial alterations in density, viscosity and
osmotic pressure
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o Governing principles for modeling

= Solute characteristics
 Partitioning between plasma and red blood cell
 Partial solute rejection at membrane surface

= Membrane factors
* Interaction of convective and diffusive transport

« Concentration polarization of blood cells, protein
and partially reflected smaller molecules

* Interaction of hydraulic pressure and osmotic
effects to produce forward filtration and
backfiltration
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o Governing principles for modeling

= Dialysate factors
 Applied fluid flows and pressures
« Concentration of solutes in dialysate

= Dialysate has cooler temperatures than blood
« Heat loss to environment

« Temperature dependence of blood density and
VISCOsity

= lonic charge on proteins and some solutes
 Protein rejection at membrane
 Impairment of solute transport across membrane
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Ha Previous mathematical models

“r = Single compartment models

:[ = Multiple compartment models

A = One-dimensional computational models

= = Two/three-dimensional computational model
* Finite element analysis
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Single compartment analytical model

Pallone TL: Kidney Int 1988;33:685-98
Pallone TL: Kidney Int 1989;35:125-133

Single blood and dialysate
mass balance compartments

Used a length-averaged mass
transfer coefficient for solutes

« Dependent upon operating
conditions

Overestimated filtration rate vs.
experimental data

« Could not account for
concentration polarization or
membrane rejection

Unable to account for
processes such as backfiltration
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s Multiple compartment analytical model

Accounted for local fluid
balance changes (axially only)

* Pressure drops

 Viscosity

* Osmotic effects
Addressed fluid fluxes only

v * Did not include convective or
diffusive solute transport

Described backfiltration not
possible in simpler models

Does not account for radial
effects

» Concentration polarization
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Fiore GB: Contrib Nephrol 2005;149:27-34
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o One-dimensional computational models

= Ordinary differential
equations solved
numerically along the axis

* Included local viscosity,
osmotic pressure, efc.

= Include solute transport
Y A A R R with convection-diffusion
interaction

* Formulas of Zydney
(extension of Villarroel)

* Flat membrane
* Included approximations of

boundary layer effect on
mass transfer coefficient

Legallis C: J Membr Sci 2000;168:3-15 °
Raff M: J Membr Sci 2003;216:1-11 Able tO acc_;ount fOI’ . .
concentration polarization
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s Limitations of previous models

= Simplifying assumptions
» Overall mass transfer coefficients
» Approximations to boundary conditions

= Geometrically naive
 Single compartments naive to axis and radius

* Multiple compartments naive to radius, and approximate axial
conditions

- One dimensional computational models approximate radial
conditions

« Membranes modeled as boundaries only
» Biased estimates of convection-diffusion interaction

* Ignored in previous models

- Based on older flat membrane analysis in advanced models
+ Model geometry based on hollow fiber membranes
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s Hollow Fiber Geometry Modeling

170 pm
120 um 225 um
Hospal M60 Blood
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\ * /’ membrane Membrane— |
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o COMSOL Application Modes

Protein:
Conv_ectiqn- Solute:
Diffusion Convection-
Diffusion
Heat:
Heat
™ transport
Blood: Dialvsate:
Non-Newtonian |a_ysa ©
~ Navier-Stokes

-
o \
-
.

Membrane: Brinkman
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Senes Fahraeus-Lindqvist Effect
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A Colloid Osmotic Pressure
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A Solute reflection

us = um-(1-0)
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s Protein concentration in blood phase
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Ha Ultrafiltration rate validation
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o Hemofiltration vs dialysis

CVVH vs CVVD for various sized solutes
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Solute clearance during dialysis

Historical assumption:

Vbidin

» \/bigout

Vdiain <

Vdiaout

Recent recognition:

Vdiain = Vdiaout — zero net ultrafiltration — diffusive clearance only
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A Internal filtration / backfiltration

Internal filtration / backfiltration

Convective flux (mol/(m2°s))

Distance from inlet
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i protein diffusion coefficient
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Expanding the application modes

Solute charge:

Electrostatics

Protein charge:
Electrostatics

Protein:

Convection- —

Diffusion

Blood:
Non-Newtonian

R4

*
*
>

Membrane

charge:
Electrostatics

Solute:
Convection-
Diffusion

e

Heat:
Heat
transport

Dialysate:
Navier-Stokes

Membrane: Brinkman
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LS Modeling the circadian rhythm — existing

Health

ki ordinary differential equation models

i Key:
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I  DNA binding kinetics 4 hapra - [PER - TIM,] (6)
-

r_l,. - !
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+ Diffusive transport
« Convective transport
36 « Chemical reactions
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o In closing

= Multiphysics modeling has not been widely exploited
In medicine and biology

= Most modeling to date has been in the application of
technology to medical treatments, such as artificial
organs and tissue heating

= Little multiphysics finite element analysis has been
applied to study of underlying physiological and
cellular processes
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