UNCERTAINTY ANALYSIS, VERIFICATION AND VALIDATION OF STRESS CONCENTRATION IN A CANTILEVER BEAM

Soudabeh Kargar, Dr.Bardot University of Alabama in Huntsville

INTRODUCTION

- Stress Concentration in a Loaded Cantilever Beam which has a Hole
- Structural Mechanics Module in COMSOL Version 4.0a
- Simulations are Compared with Theoretical Values and Experimental Results
- Uncertainty in Simulation and Experimentation
- Monte Carlo Method was Used to Estimate the Total Uncertainty (Random & Systematic)
- Parametric Sweep Function in COMSOL

EXPERIMENT SETUP

GRID CONVERGENCE STUDY

• Grid Convergence Study for Optimizing Tetrahedral Mesh Size for the Simulations.

• Nine Different Mesh Sizes

Stress Concentration, K _t , vs 2.0 No of Elements	Mesh Size	Kt	No of Elements	Average Element Quality	Solution Time (s)
	Extremely Coarse	1.100	84	0.2674	1.765
	Extra Coarse	1.292	102	0.3396	1.656
1.2	Coarser	1.197	191	0.5082	1.563
1.0	Coarse	1.232	259	0.5874	1.593
0 5000 10000 15000	Normal	1.718	644	0.7070	1.734
No. of Floments	Fine	1.842	1340	0.7377	1.984
No. of Elements	Finer	1.773	3340	0.7746	2.500
	Extra Fine	1.776	6082	0.7950	2.860
	Extremely Fine	1.781	16080	0.8213	4.422

 Both Simulations Bracket the Theoretical Value of Deflection.

University of Alabama in Huntsville

7

More

EXPERIMENTAL UNCERTAINTY ANALYSIS

Convergence of Average and Standard Deviation of K_t for Experiment

8

University of Alabama in Huntsville

UNCERTAINTY IN SIMULATION WITH COMSOL

o Input Parameters: t, L, w, d, Inom, P, E

Inom

Ρ

University of Alabama in Huntsville

POST PROCESSING

• The Stress or Strain Concentration Factor:

T Model Builder	👬 Settings 🛛 🏶 Material Browser 🛛 🗹 🖳 🗖 🗍		
□ 10 2951 to 3000.mph (root) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Average		
I III (<i>mod1)</i> IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	▼ Data		
🖃 🖷 🛄 Results	Data set: Cut Line 3D 2, at Nominal Strain 🛛 🔄		
Solution 1	Settings		
Cut Line 3D 1, Through the Hole	👬 Settings 🛛 🗯 Material Browser 🛛 🖌 🖳 🗖 🗖		
Average 1	A Maximum		
	▼ Data		
B	Data set: Cut Line 3D 1, Through the Hole 🔽 🛐		
	Settings		

STRAIN DISTRIBUTION

CONVERGENCE OF NUMBER OF SAMPLES IN SIMULATION

- Computing Power, a Controlling Factor
- Importance of Convergence Study
- Simple versus Complicated Models

Histogram of K_t for Uncertainty in COMSOL Simulation in Comparison to Gaussian Distribution. Convergence of Average and Standard Deviation of K_t for COMSOL Simulation.

COMPARISON OF HISTOGRAMS

Histogram of K_t for Experiment and Simulation

SUMMARY AND RESULTS

- In this Paper, we Looked at Experimentation, Computational Simulation and the Uncertainty Propagation.
- The Stress Concentration Factor:
 - In Experiment :1.646 ± 0.0141 and 1.646 ± 0.0157
 - In Simulation: 1.80 ± 0.050.
 - Thus we have a Comparison Error⁶ Implying there is an Un-modeled, Unsimulated Effect such as the Strain Gauge Sensor Glue; or, Perhaps there is an Experimental or Input Uncertainty that is not Captured.
- Parametric Sweep in COMSOL is a Simple Tool to Perform Uncertainty Analysis with Monte Carlo Technique in our Computational Simulations.
- The Same Method can be Used to Learn which Parameter has More Effect on the Final Result.
- In Order to Prevent Consuming Time and Money on Doing Different Experiments with Different Uncertainty in Parameters, we can use Uncertainty Analysis in Simulation to Find out which Parameter(s) are Controlling Factors.
- Defining Cut-line in Parametric format causes Problem.

REFERENCES

- 1. Hugh W. Coleman, W Glenn Steele, Experimentation, Validation, and Uncertainty Analysis for Engineers 3rd Edition, page 64, John Wiley & Sons, Inc., Hoboken, New Jersey (2009).
- 2. Instrumentation Division Measurements Group, INC, *P-3500 Digital Strain Indicator Instruction Manual*, page 8 and 14.
- 3. Introduction to COMSOL Multiphysics Version 4.0a (2010)
- 4. S. P. Timoshenko, J. N. Goodier, *Theory of Elasticity*, page 26, 27, 28, 65, 66, 67, 68, 90, 91, 92. McGraw-Hill Book Company, New York (1970).
- 5. J. A. Gilbert, C. L. Carmen, MAE/CE 370 Mechanics of Materials Laboratory Manual Version 1.0, page numbers. Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville (2000).
- 6.The American Society of Mechanical Engineers, ASME V&V 20-2009 – Standard for Verification and Validation in Computational Fluids and Heat Transfer", November 2009.

THANK YOU!

STRESS DISTRIBUTION AROUND CIRCULAR HOLES

• Strain Distribution:

$$\varepsilon_{i} = A + B \left[\frac{R}{Z_{i}} \right]^{2} + C \left[\frac{R}{Z_{i}} \right]^{2}$$

R(in)	Z1(in)	Z2(in)	Z3(in)
0.125	0.145	0.185	0.325

$$C = 5.86(\varepsilon_1 - \varepsilon_2) - 5.44(\varepsilon_2 - \varepsilon_3)$$

$$B = 3.49(\varepsilon_1 - \varepsilon_2) - 1.2C$$

$$A = \varepsilon_1 - 0.743B - 0.522C$$

• At the Edge of the Hole where,

$$\varepsilon_{\max} = A + B + C$$

R: Radius of Hole Zi: Distance from Strain Gage to the Center of the Hole A,B,C: Constants

 $\frac{R}{-}=1$

Ζ

EXPERIMENTAL RESULTS

• The Uncertainty of K_t is Found by Two Methods:

 1) Random and Systematic Uncertainties for K_t are Calculated as Standard Deviation and then are Combined with:

$$u_{Kt} = \sqrt{b_{Kt}^{2} + S_{Kt}^{2}}$$

- 2) Value of K_t is Found for All 3000 Samples Including the Random and Systematic Uncertainty and then the Total Uncertainty for K_t is Calculated by Calculating the Standard Deviation
- The Average Value of K_t for both Methods:
 - Average = 1.646
- The Total Uncertainty for both Methods:
 - Method (1) = 0.0141
 - Method (2) = 0.0157

PARAMETRIC SWEEP

• Defined Variables for:

- Random Error
- Systematic Error

dummy	Dummy Variable in Ascending Order	Parameter	Average	Random Error	Systematic Error
L	Length of the Beam	L	11.260	0.009	0.003
W	Width of the Beam	W	1.002	0.001	0.001
t	Thickness of the Beam	t	0.252	0.002	0.001
d	Diameter of the Hole	d	0.246	0.002	0.001
lnom Distan End	Distance, Nominal Stress to Fixed	lnom	1.021	0.005	0.001
	End	P1	4.010	0.000	0.010
Р	Load	P2	0.064	0.002	0.010
E	Modulus of Elasticity	E	1.04E+07	2.5%	0

3 DIMENSIONAL GRAPH OF THE STRESS DISTRIBUTION AROUND THE HOLE

Strain Distribution at the Hole

