Absorbing boundary domain for CSEM 3D modelling

COMSOL User Conference, Nov. 2010, Paris

J. Park, T.I. Bjørnarå (NGI, Oslo, Norway), B.A. Farrelly (MultiField Geophysics AS, Bergen, Norway)

Content

- Marine CSEM, principle
- PML, (short) history
- Proposed PML/ABD and implementation to COMSOL Multiphysics, RF module
- Test examples:
 - 1. Deep water
 - 2. Shallow water
- Comments on mesh
- Summary

PML, history

Complex-value stretching For our application: Not efficient enough due to high attenuation

- Berenger, J., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114(2), 185-200. (1994).
- Etc.

Yet,

Real-value stretching

 Lysmer, J., M. Tabatabaie-Raissi, F. Tajirian., S. Vahdani, and F. Ostadan (1981). SASSI - A system for analysis of soil-structure interaction, Report UCB/GT 81-02, Univ. of California, Berkeley, USA.

© comsol_2010_model_10_QE.mph - COMSOL Multiphysics

File Edit Options	s Help	
DBBB	s 🗢 🖉 🖳 🗄 🚽 🚽	
Selection List	후현실 Settings	🖌 🖳 🖓 E
Analytic		
▼ Function Na	me	
Function name:	Spml	
▼ Parameters	-	
Expression:	x_local*a^(abs(x_local/h0))	
Arguments:	x_local, a, h0	
Derivatives:	Automatic	~
Periodic Ext	ension	
Plot Parame	eters	
Model Builder		V - E
Comsol_20	10_model_10_QE.mph <i>(root)</i> Definitions irameters halytic 1 <i>(Spml)</i> 1 <i>(mod 1)</i> efinitions ecometry 1 aterials ectromagnetic Waves <i>(rfw)</i> eshes 1 s	

Working set: 266 MB Virtual memory: 272 MB

Test example 1: infinite-deep water without air-wave effect

- Infinite deep seawater
- 0.25Hz inline HED
- Receiver line: 0–10km, or 0–5km on seabed
- The subsurface consists of four layers
- ABD sizes are 3 and 10 km

Layers:

1. Overburden, 1000m 1 Ω m

2. Target-layer, 100m, 100 Ω m

3. Underburden, 400m, 1 Ω m

4. Half-space, 10 Ω m

AVO and PVO for 5km model

Test example 2: shallow water with air-wave effect

- 500m water depth
- 0.25Hz inline HED
- Receiver line: 0–10km, or 0–5km on seabed
- Subsurface consists of four layers
- ABD size is10km

Layers:

1. Overburden, 1000m 1 Ω m

2. Target-layer, 100m, 100 Ω m

3. Underburden, 400m, 1 Ω m

4. Half-space, 10 Ω m

AVO and PVO for 5km model

Mesh

- Note that mesh size in ABD is rather big
- Note that dense mesh near the the receiver lines are made

Summary

- An efficient absorbing boundary domain technique is implemented and evaluated in COMSOL
 - Real-valued (and complex-valued) exponential stretching

- Acknowledgements:
 - Thank to Statoil, MultiField Geophysics, and NGI for their financial support for this study and permission to present

