2D Flow Past a Confined Circular Cylinder with Sinusoidal Ridges
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INTRODUCTION: Using the CFD Module of COMSOL
Multiphysics 5.4, we studied the flow past a circular

cylinder with sinusoidal ridges (shown below), at
Reynolds numbers of 20, 50, 200, and 500.

We define the cylinder in
polar coordinates by

L
r(6) =§+a-cos(w6), 0<60<2m

Where L = 0.15m is the base
cylinder diameter, a is the
ridge amplitude, and w is

. Figure 1. Sinusoidally ridged
the number of ridges.

cylinder, a = L/25, w = 15.

COMPUTATIONAL METHODS: The computational
domain is a two- dimensional plane channel with
length 20L and width 3L. The center of the cylinder is
positioned in the center of the channel, a distance 2L
from the inlet. An inlet velocity with a parabolic profile
is chosen at the leftmost wall, and a zero-pressure
outlet boundary condition is chosen at the rightmost
wall.
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Figure 2. Computational domain with mesh

We use the following dimensionless quantities:
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Where U_is the centerline velocity, f is the frequency of
vortex shedding, and F, F, are the total drag and lift
forces, respectively.

Additionally, we perturb the flow with a brief vertical
oscillation of the cylinder in order to trigger vortex

shedding at Re = 200 and 500.
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Figure 2. Perturbation velocity vs. time

VERIFICATION: We check our results for a smooth
cylinder against Shafer et al (1996)[1] and Singha
(2010)[2]. The results match with excellent agreement.

RESULTS: In the laminar flow regime, we found:

 The recirculation zone length is independent from

the number of ridges

* The following relationships between the number of
ridges and C,, and for w = 4, between the
counterclockwise angle of attack a and Cj:
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Figure 3. C, vs. w (Re = 50)
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Figure 4. C, vs. a (Re =50, w = 4)

* Similar relationships were found for Re = 20.

In the periodic shedding regime, we found the

following relationships:
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Figure 5. C | can
and 500 (a = L/25)
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Figure 6. St vs. w, Re = 200 and
500 (a = L/25)
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Figure 7. C; 1 can
and a = L/50 (Re = 500)

vs.w,a=L/25  Figure8.C__ ., Vvs.w,a=L/25
and a = L/50 (Re = 500)

 Values for the Strouhal number, St, were also
computed.

CONCLUSIONS & FURTHER RESEARCH:

* As w increases, the Cp, C;, and St values tend to
approach that of a smooth cylinder (w =0).

* When w >~13 in the periodic shedding regime,
values for St, Cp oy @and C 1 beCOMeE
approximately steady. When w < ~13, results are
erratic and no clear trend can be deduced.

* More research needs to be done to investigate the
unique geometry of cylinders with 1 < w < 4.
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