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1. Introduction 
 

Flow past a circular cylinder is a classical 

problem in fluid mechanics. Cylindrical structures 

immersed in viscous flow, such as smokestacks, 

bridge struts, measurement instruments, medical 

devices, etc., are common in engineering 

applications, so understanding the flow physics in 

these situations is of prime importance. While a 

significant amount of work has been done analyzing 

viscous flow past an unconfined circular cylinder, 

there is significantly less work studying the same 

problem with a confined cylinder. These situations 

arise in applications such as pipe flow, blood flow 

through arteries, or in situations where the scaling of 

a particular experiment requires wall effects to be 

taken into consideration. There are various effects 

imposed on the flow in the confined case, particularly 

when the cylinder is confined to a plane channel. For 

example, when no-slip conditions on the walls are 

assumed, the velocity profile becomes parabolic as 

opposed to uniform. The von Kármán vortex street 

that appears at the onset of the laminar periodic 

shedding regime exhibits different behavior when 

confined to a plane channel, as the walls limit the 

motion of vortices moving perpendicular to the flow 

[1]. Furthermore, a variety of effects have been noted 

when the ratio of cylinder diameter to channel width 

(also known as blocking ratio) changes. For instance, 

evidence suggests that the critical Reynolds number 

marking the start of the periodic shedding regime 

increases with increasing blocking ratio [2]. This is 

likely because the walls inhibit the oscillation of the 

near-wake tail, hence enhancing the stability of the 

near-wake region and postponing the transition to the 

periodic shedding regime [3]. 

Surface roughness can have a considerable 

effect on the flow physics, as well, most notably at 

high Reynolds numbers. While most surface 

roughness has a relatively random pattern, 

predictable forms of roughness can appear in certain 

contexts. For example, consistent waviness 

resembling sinusoidal waves can appear on the 

surface of 3D printed solids (see Figure 1) due to 

vibrations caused by the 3D printing process or 

external events. The effect of surface roughness is 

primarily studied at high Reynolds numbers [4], but 

in the present study we study the flow effects at 

Reynolds numbers in the steady laminar and periodic 

shedding regimes.  

 

 
Figure 1: Waviness on 3D printed solid 

 

We use the CFD Module of COMSOL 

Multiphysics 5.4 to simulate two-dimensional flow 

past a circular cylinder with consistent sinusoidal 

ridges confined to a plane channel with fixed 

blocking ratio. Flow effects are studied at Reynolds 

numbers of 20, 50, 200, and 500. We perform steady 

and time-dependent simulations to measure a variety 

of quantities of interest, such as the recirculation zone 

length and drag coefficient in the laminar regime 

(corresponding to Re = 20 and 50), and the Strouhal 

number, peak-to-peak lift coefficient amplitude, and 

mean drag coefficient in the periodic shedding 

regime (corresponding to Re = 200 and 500). 

 

2. Problem Formulation 
 

To model the sinusoidal ridges, we 

parametrically define the cylinder boundary in polar 

coordinates by 

 

𝑟(𝜃) =
𝐿

2
+ 𝑎 ⋅ cos(𝜔𝜃) ,   0 ≤ 𝜃 ≤ 2𝜋 

 

Where L is the base cylinder diameter, 𝑎 is 

the amplitude of the ridges, and 𝜔 is the total number 

of ridges. For all simulations, we select 𝐿 = 0.15m. 

Motivated by the size of the observation chamber 

utilized in a closed loop water flow tank available in 

Mechanical Engineering Program of our campus, the 

two-dimensional computational domain is selected to 

have channel length and width of 20𝐿 and 3𝐿, 

respectively. Following Schäfer5, the center of the 

cylinder is positioned in the center of the channel, a 
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distance 2𝐿 from the inlet. An inlet velocity with a 

parabolic profile is chosen at the leftmost wall, and a 

zero-pressure outlet boundary condition is chosen at 

the rightmost wall. The inlet velocity is ramped up 

from zero in order to ensure the solver can find 

consistent initial values. Physics-controlled mesh, 

calibrated for laminar flow, is generated by 

COMSOL, with the element size set to Finer. The 

domain with mesh is shown in Figure 2. 
 

 
Figure 2. Computational domain with mesh 

 

We define the Reynolds number based on 

the base cylinder diameter 𝐿 and the centerline 

(maximum) velocity 𝑈𝑐: 

𝑅𝑒 =
𝜌𝑈𝑐𝐿

𝜇
 

Additionally, we define the Strouhal number 

𝑆𝑡, and drag and lift coefficients, 𝐶𝐷 and 𝐶𝐿, using 

the well-known formulation: 

 

𝑆𝑡 =
𝑓𝐿

𝑈𝑐

,  𝐶𝐷 =
2𝐹𝐷

𝜌𝑈𝑐𝐿
,  𝐶𝐿 =

2𝐹𝐿

𝜌𝑈𝑐𝐿
 

 

Where 𝑓 is the frequency of vortex 

shedding, which is equivalent to the frequency of the 

time-dependent lift coefficient oscillation, and 𝐹𝐷 and 

𝐹𝐿 are the total drag and lift forces acting on the 

cylinder, respectively. 

 

3. Equations and Numerical Methods 
 

In this study, for cases involving time-dependency, 

corresponding to Re = 200 and Re = 500, COMSOL 

solves the velocity fields 𝒖 using the time-dependent 

Navier-Stokes equations for incompressible laminar 

flow: 

𝜌 
𝜕𝒖

𝜕𝑡
+ 𝜌 (𝒖 ∙ ∇)𝒖 = ∇ ∙ [−𝑝𝑰 + 𝑲] + 𝑭 

Here, the first and second terms on the left hand side 

represent the unsteadiness and convective 

acceleration, respectively. On the right hand side, the 

fluid forces due to hydrostatic pressure and fluid 

shear stresses are included on the first term. In 

particular, for incompressible fluid, the stress tensor 

is presented simply as a linear relationship 

    

𝑲 = 𝜇(∇𝒖 + (∇𝒖)𝑇) 
 

where 𝜇 is the fluid viscosity. Lastly, the vector 𝑭 is 

the volume force vector. The above differential 

equations are solved along with the incompressibility 

restriction; 

𝜌 ∇ ∙ (𝒖) = 0 
 

In the stationary cases of this study, corresponding to 

Re = 20 and Re = 50, the unsteady term is ignored 

from the equation and the 𝒖 does not depend on time. 

 

To compute the drag and lift, COMSOL 

integrates the stresses along the cylinder wall in the 𝑥 

and 𝑦 directions, respectively. Other statistics related 

to the time-dependent lift and drag coefficients, such 

as the mean 𝐶𝐷, the Strouhal number, and the peak-

to-peak 𝐶𝐿 amplitude, are computed using a custom 

script written in MATLAB. The script determines the 

simulation time associated with the steady state of 

vortex shedding (see Figure 3), and then processes 

the lift and drag coefficient data after that point. 

 
Figure 3. Example lift coefficient versus time plot for Re = 

200. After 𝑡 = 650s, 𝐶𝐿(𝑡) has a consistent amplitude. 
 

For all time-dependent simulations, we use a 

perturbation in the form of short-lived vertical (y-

direction) oscillation of the cylinder, where the wall 

moves at the following equation-driven velocity: 
 

𝑣(𝑡) =
𝑈𝑐

10
𝑅(𝑡 − 4) sin(15(𝑡 − 4)) 𝑒−2(𝑡−4)  

 

Where 𝑅(𝑡) is an appropriate ramp function 

to ensure the solver can find consistent initial values. 

The constants used are chosen mostly arbitrarily, 

with the exception of the amplitude 𝑈𝑐/10 (chosen as 

such so the perturbation is significantly smaller than 

the inlet velocity) and the time shift of 4 seconds (so 

the perturbation is triggered a few seconds into the 

simulation). Figure 4 shows a plot of the perturbation 

as a function of time. It should be noted that the 

perturbation only impacts the transient phase - after 

performing simulations to verify this, we concluded 

that the perturbation has no effect on the steady state 

solution. 
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Figure 4. Perturbation velocity versus time 

 

In the stationary case, in order to compute 

the length of the recirculation zone 𝑙𝑟 , which is 

another variable of interest (see figure 5), MATLAB 

is used to find the stagnation point behind the 

cylinder, which corresponds to finding the point of 

minimum velocity along the horizontal domain 

centerline. 

 

 
Figure 5. Stagnation point and length of recirculation zone 
 

4. Verification 
 

In order to verify the correctness of the 

selected computational method, applied inlet 

perturbation, mesh density, as well as the custom 

numerical code in MATLAB, we attempt to replicate 

the results of established studies in the literature, 

namely, of flow past a smooth circular cylinder.  

Shafer (1996) collected benchmark 

computations of flow past a circular cylinder 

confined to a plane channel with similar blocking 

ratio and Reynolds numbers as we study [5]. To 

verify our methods for the stationary case, we 

simulate the two-dimensional steady case (2D-1) 

studied by Shafer. We use a similar mesh (Physics-

controlled, Finer element size) and the same 

computational methods described above to compute 

key quantities of interest above. In particular, we 

compute the length of the recirculation zone 𝑙𝑟 , drag 

coefficient 𝐶𝐷, and lift coefficient 𝐶𝐿. Our results 

match closely, although our values tend to be slightly 

smaller than Shafer. Table 1 summarizes the results, 

along with the upper and lower bounds of possible 

“exact” values given by Shafer [5]. 

 
Table 1. Summary of stationary verification study 

 

 𝑙𝑟  𝐶𝐷 𝐶𝐿 

Present study 5.56 0.00958 0.0770 

Shafer lower bound 5.57 0.0104 0.0842 

Shafer upper bound 5.59 0.0110 0.0852 

 

To verify our methods for the time-

dependent case, we perform simulations similar to 

those of Singha and Sinhamahapatra (2010)[6]. In 

particular, we use their geometric setup at a blocking 

ratio of 3 (using their definition) and a Reynolds 

number of 200, and apply our mesh and 

computational methods to determine 𝐶𝐷,𝑚𝑒𝑎𝑛, 𝐶𝐿,𝑟𝑚𝑠, 

and 𝑆𝑡. Our results are in excellent agreement with 

Singha and Sinhamahapatra’s, with the exception of a 

slight discrepancy in the 𝐶𝐿,𝑟𝑚𝑠 values. Table 2 

summarizes these results. 

 
Table 2. Summary of time-dependent verification study 

 

 𝐶𝐷,𝑚𝑒𝑎𝑛 𝐶𝐿,𝑟𝑚𝑠  𝑆𝑡 

Present study 1.421 0.263 0.233 

Sinha and 

Sinhamahapatra[6] 

1.423 0.272 0.233 

 

5. Results and Discussion 
 

5.1 Stationary Results 

 

In the stationary case, we performed 

simulations to test the effect of changing the number 

of ridges 𝜔 on the length of the recirculation zone 𝑙𝑟  

and the drag coefficient 𝐶𝐷. Ultimately, we found that 

the length of the recirculation zone is independent of 

the number of ridges. For both 𝑅𝑒 = 20 and 𝑅𝑒 =
50, the recirculation zone length is the same as that 

of a smooth cylinder for 𝜔 from 5 to 25. This 

confirms the idea that 𝑙𝑟  should primarily depend on 

the blocking ratio and Reynolds number. However, 

for 𝜔 = 4, 𝑙𝑟  is slightly less than the others, which is 

indicative of the fact that 𝜔 = 4 corresponds to a 

qualitatively different geometry than that of a 

cylinder. 

We found an increasing relationship 

between 𝐶𝐷 and 𝜔 for Re = 20 and Re = 50, which 

can be seen in figures 6 and 7. For both Reynolds 

numbers, 𝐶𝐷 is higher when 𝑎 is larger (𝐿/25), 

which may be due to the greater channel blocking 
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effect. Additionally, 𝐶𝐷 as a function of 𝜔 gets closer 

to 𝐶𝐷 for a smooth cylinder as 𝜔 increases, although 

it is still lower. This may be evidence for the 

hypothesis that high numbers of ridges can roughly 

approximate a smooth cylinder, at least at low 

Reynolds numbers. It does not appear that this is the 

case in the turbulent flow regime, but that is beyond 

the scope of this paper [4]. Furthermore, the case of 

𝜔 = 4 does not fit with the main trend of the data in 

any case, which again points to the unique geometric 

nature of this case.  

 

 
Figure 6. 𝐶𝐷 vs. 𝜔, 𝑅𝑒 = 20. 

 

 
Figure 7. 𝐶𝐷 vs. 𝜔, 𝑅𝑒 = 50. 

 

Additionally, due to the unique behavior for 

𝜔 = 4, we studied the effect of changing the angle of 

attack 𝛼 (measured counterclockwise) on the drag 

coefficient 𝐶𝐷. The plots can be seen in figures 8 and 

9. As expected, when 𝛼 sweeps from 0 to 90 degrees, 

the result is symmetric due to the symmetry of the 

problem. For both Re = 20 and Re = 50, 𝐶𝐷 is larger 

when a = L/25, which is partially due to the increased 

channel blocking. Additionally, when 𝛼 = 45°, the 

drag coefficient reaches a minimum, and the 

difference between 𝐶𝐷 for each value of 𝑎 is smaller. 

This effect is more pronounced in the Re = 50 case. 

 

 
Figure 8. 𝐶𝐷 vs. 𝛼, 𝑅𝑒 = 20, 𝜔 = 4. 

 

 
Figure 9. 𝐶𝐷 vs. 𝛼, 𝑅𝑒 = 50, 𝜔 = 4. 

 

5.2 Time-Dependent Results 

 

In the time-dependent case, we studied three 

quantities of interest: the Strouhal number St, the 

mean drag coefficient 𝐶𝐷,𝑚𝑒𝑎𝑛, and the peak-to-peak 

lift coefficient amplitude 𝐶𝐿,𝑝𝑘𝑝𝑘. Three parameters 

are varied: the ridge amplitude 𝑎, the number of 

ridges 𝜔, and the Reynolds number 𝑅𝑒. In every plot 

that follows, we plot a quantity of interest versus the 

number of ridges. Parametric sweeps were performed 

for the case of zero ridges (corresponding to a smooth 

cylinder) and from 4 to 25 ridges. In one set of plots, 

we compare the effects of two different 𝑅𝑒 values, 

while in the other set of plots, we compare the effects 

of two different values of 𝑎. 

For the set of plots that compare values of 

𝑅𝑒, we keep 𝑎 = 𝐿/25 fixed, and we compare the 

effects at 𝑅𝑒 = 200 and 𝑅𝑒 = 500. Figures 10, 11, 

and 12 show the effect of varying 𝑅𝑒 on the 

𝜔 −dependent progression of 𝑆𝑡, 𝐶𝐷,𝑚𝑒𝑎𝑛, and 

𝐶𝐿,𝑝𝑘𝑝𝑘, respectively. A few key trends can be noted. 

First, as figure 10 shows, the Strouhal number tends 

to be higher when Re = 200. The same can be said for 

𝐶𝐷,𝑚𝑒𝑎𝑛. The reverse is true for 𝐶𝐿,𝑝𝑘𝑝𝑘: for Re = 500, 

𝐶𝐿,𝑝𝑘𝑝𝑘 tends to be higher. 
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Figure 10. St vs. 𝜔, 𝑅𝑒 = 200 and 500 (𝑎 = 𝐿/25). 

 

 
Figure 11. 𝐶𝐷𝑚𝑒𝑎𝑛  vs. 𝜔, 𝑅𝑒 = 200 and 500 (𝑎 = 𝐿/25). 

 

 

Figure 12. 𝐶𝐿,𝑝𝑘𝑝𝑘 vs. 𝜔, 𝑅𝑒 = 200 and 500 (𝑎 = 𝐿/25). 

 

For the set of plots that compare values of 𝑎, 

we keep 𝑅𝑒 = 500 fixed, and we compare the effects 

of 𝑎 = 𝐿/50 and 𝑎 = 𝐿/25. Figures 13, 14, and 15 

show the effect of varying 𝑎 on the 𝜔 −dependent 

progression of 𝑆𝑡, 𝐶𝐷,𝑚𝑒𝑎𝑛 , and 𝐶𝐿,𝑝𝑘𝑝𝑘, respectively. 

Notice that only odd numbers of 𝜔 are present here. 

The plots show a few key trends. First, the Strouhal 

number tends to be slightly higher when the ridge 

height is smaller, as figure 12 shows. However, a 

larger ridge height causes 𝐶𝐷,𝑚𝑒𝑎𝑛  and 𝐶𝐿,𝑝𝑘𝑝𝑘 to be 

larger, as shown in figures 14 and 15. 

 

 
Figure 13. St vs. 𝜔, 𝑎 = 𝐿/25 and 𝑎 = 𝐿/50 (𝑅𝑒 = 500). 

 

 

 

Figure 14. 𝐶𝐷,𝑚𝑒𝑎𝑛  vs. 𝜔, 𝑎 = 𝐿/25 and 𝑎 = 𝐿/50 (𝑅𝑒 =

500). 

 

 

Figure 15. 𝐶𝐿,𝑝𝑘𝑝𝑘 vs. 𝜔, 𝑎 = 𝐿/25 and 𝑎 = 𝐿/50 (𝑅𝑒 =

500). 

 

There are also a few general trends that 

apply to all of the plots for the time-dependent case. 

First, for each plot, the results are very erratic and no 

clear trend can be deduced when 𝜔 is small, which is 

likely due to the qualitatively different geometry for 

small 𝜔. While there do tend to be clear trends in the 

stationary simulations (at lower Reynolds numbers) 

for 𝜔 between 5 and 13, it is likely that the higher 

Reynolds numbers of the present simulations 

accentuate the unique flow physics caused by the 
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qualitatively different geometry of the cylinders with 

𝜔 in this range. Figures 10 and 11 show how the 

critical value of 𝜔 after which St and 𝐶𝐷,𝑚𝑒𝑎𝑛 as 

functions of 𝜔 become approximately steady tends to 

be higher when Re = 500, which supports the 

hypothesis that higher Re accentuates the effect of 

the different geometry at low 𝜔. For St, 𝐶𝐷,𝑚𝑒𝑎𝑛 , and 

𝐶𝐿,𝑝𝑘𝑝𝑘, the consistent values obtained after 𝜔 ≈ 13 

closely approximate the value for the case of a 

smooth cylinder, which further supports the 

hypothesis that a cylinder with many ridges can, in 

some sense, approximate a smooth cylinder. 

 

6. Conclusion and Further Research 
 

Using the CFD module of COMSOL 

Multiphysics 5.4, we performed stationary and time-

dependent simulations of flow past a confined 

circular cylinder with sinusoidal ridges, at a fixed 

blocking ratio. At four different Reynolds numbers, 

we varied the number of ridges and their amplitude 

and observed the effects.  

In the stationary case, we determined  that 

the length of the recirculation zone is independent of 

the number of ridges, while the drag coefficient 

generally increases as the number of ridges increases. 

Additionally, 𝐶𝐷 is larger when the ridge height is 

increased. We also studied the effect of changing the 

angle of attack for cylinder with four (4) ridges, and 

found that 𝐶𝐷 reaches a minimum when 𝛼 = 45°. 

This minimization is more pronounced for a larger 

ridge height. 

In the time-dependent case, there is no clear 

relationship between any of the quantities studied and 

the number of ridges when 𝜔 < ~13. However, after 

𝜔 > ~13, there tends to be little change in the value 

of most quantities. Most quantities as functions of 𝜔 

tend to oscillate around this “steady” value before 

settling down to it. Additionally, we find that the 

mean drag coefficient and peak-to-peak lift 

coefficient are larger for a larger ridge height, but the 

opposite is the case for the Strouhal number. 

There are also a few general observations 

about this particular cylinder geometry worth noting. 

First, a cylinder with four ridges has a qualitatively 

different geometry than other numbers of ridges. A 

similar effect can be seen for cylinders with less than 

~13 ridges, as it is difficult to deduce clear trends for 

quantities measured in the time dependent case when 

𝜔 < ~13. Second, in some senses, a cylinder with a 

large number of ridges can approximate a smooth 

cylinder, although it is unclear whether this is due to 

decreased computational accuracy. Most quantities 

studied tended to approach the value for a smooth 

cylinder for high numbers of ridges. Finally, the 

results tentatively suggest that a higher Reynolds 

number accentuates the erratic behavior associated 

with the unique geometry of cylinders with relatively 

low numbers of ridges. This can be seen in the fact 

that 𝜔 = 4 is the outlier in the stationary (𝑅𝑒 = 20 

and 50) tests, yet in the time dependent (𝑅𝑒 = 200 

and 500) tests, it is difficult to deduce a clear trend 

for any quantities when 𝜔 < ~13. 

As of now, little is understood about the 

precise flow physics past sinusoidally ridged circular 

cylinders. More research needs to be done to isolate 

the exact causes of the trends we have noted. 

Simulations and experiments in an unconfined 

domain would help eliminate the potential effect of 

blocking on the quantities studied here, and tests 

performed at a wider range of Reynolds numbers 

could help determine if there are discrepancies 

between Re-dependent relationships (such as 𝑆𝑡 as a 

function of 𝑅𝑒) for smooth cylinders versus ridged 

cylinders. A cylinder with four ridges has a 

qualitatively different geometry as other ridged 

cylinders, so more tests would need to be performed 

to understand the unique flow physics in this 

situation. 
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