Air-side Optical Excitation of Surface Plasmon Polaritons on Gold

B. Johns^{1*}, V. Kalathingal² & J. Mitra^{1†}

1. School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram, India

2. Department of Chemistry, National University of Singapore, Science Drive 3, Singapore

*ben16@iisertvm.ac.in, [†]j.mitra@iisertvm.ac.in

INTRODUCTION		RESULTS
Prism coupli Exciting SPPs: Momentum matching □ Direct optical excitation – forbidden □ Momentum ∝ refractive index (n) □ Excitation at air-metal interface requires higher index medium: prism coupling	ing SPP momentum > photon momentum (in free space) Can SPPs be directly excited from "free space" (n ₀ = 1) i.e. air side?	 Mode excitation Investigated for ITO films of thickness d = 400, 100 nm Reflectance minima (light incident from air side) follow dispersion relation (solid line) – shows efficient mode excitation Red-shifted dispersion of 100 nm ITO-on-gold SPP (red double headed arrow) – effect of finite film thickness

Analytical reflectance (colour map), n_{SPP} (solid line) and reflectance minima - COMSOL (scatter)

SPP power flow: Integrated Poynting vector

- Poynting vector integrated along boundary B1 – power flow parallel to the interface
- Follows SPP dispersion relation

SPP Power flow

60

70

70

60

COMPUTATIONAL METHODS (2D)

Wave Optics module -> Electromagnetic Waves Frequency Domain interface

PML -

CONCLUSIONS

Direct, air side excitation of SPPs on gold at near-IR wavelengths is • demonstrated

Wavelength domain

- Excitation and reflectance through Port 1
- Reflectance vs λ , θ -Periodic boundaries
- Scattered field formulation (PML)
- Poynting vector normal to boundary B1 (green) Boundary Mode analysis
- Mode analysis at port 2

REFERENCES:

[1] S. A. Maier, Plasmonics: Fundamentals And Applications (Springer, New York, U. S. A, 2007). [2] E. Ozbay, Science 311, 189 (2006).

[3] V. Kalathingal, P. Dawson, and J. Mitra (submitted 2019).

[4] G. V. Naik, V. M. Shalaev, and A. Boltasseva, Adv Mater 25, 3264 (2013).

- SPP at ITO gold interface has mode index below 1. This mode does not •••• require prism/grating/scatterers to couple with EM radiation
- Mode dispersion, air side excitation, energy flow and field profiles are ••• modelled in COMSOL Multiphysics[®]

ROYAL

ACADEMY OF

ENGINEERING

Future work should aim to uncover similar materials with mode index below • 1 including visible and IR ranges

Acknowledgements

Department of Science & Technology Govt. of India

Excerpt from the Proceedings of the 2019 COMSOL Conference in Bangalore