Numerical Sensitivity Analysis of a complex Glass Forming Process by means of local perturbations

Chettapong Janya-anurak, Thomas Bernard, Hannes Birkenhofer

Fraunhofer Institute of Optronics, System Technologies and Image Exploitation

Karlsruhe, Germany

Motivation: Glass forming Process

- Industrial glass forming batch process
- Resulting tubes / rods are pre-product for optical fibers
- Very high quality requirements (precise diameter and wall thickness)

Challenges:

- highly nonlinear process radiation material properties
- strong disturbances material inhomogenities material transitions

Disturbances of the Process

Equation for glass forming process Trouton Model (1D)

Local perturbation in Partial Differential Equation system

Numerical Sensitivity Analysis

Sensitivity = Gâteaux variation

$$\delta R(e^{0};h) = \lim_{\varepsilon \to 0} \frac{R(e^{0} + \varepsilon h) - R(e^{0})}{\varepsilon}$$

- Nominal Solution R(e⁰), e⁰ = [x⁰, α⁰]
 for perturbation h
- Solution with perturbation $R(e^0 + h)$,

 Calculate the term for variation of ε around 0

$$\Delta R = \frac{R(e^0 + \varepsilon h) - R(e^0)}{\varepsilon}$$
Find the limit

$$\delta R(e^{0};h) = \lim_{\varepsilon \to 0} \frac{R(e^{0} + \varepsilon h) - R(e^{0})}{\varepsilon}$$

Use of Comsol Multiphysics

Disturbance analysis in Glass tube drawing process

Spatial-description

disturbance remains place fixed

Material-description

• disturbance moves with material

$$h(z(t)) = \Delta q(z(t), t)$$

Stationary disturbance scenario

fixed place disturbance

IOSB

Sensitivity Index

Transient disturbance scenario (Moving welding point)

Simulation of moving welding point (snapshots)

Conclusion and Future work

Approach: Method to compute the Local sensitivity δR of system response R with regarding to variation h

2 scenarios of disturbance

- Stationary disturbance (spatial fixed)
 - Improved process comprehension
- Transient disturbance (material fixed)
 - Close to reality process behavior

Future works:

- Process optimization -> Find optimal control strategies to minimize of the welding point effect
- Parameter estimation (Disturbance, Oven Profile)

