Campus Künzelsau Reinhold-Würth-Hochschule

TECHNIK WIRTSCHAFT INFORMATIK

Theory of Proportional Solenoids and Magnetic Force Calculation

Presented at the COMSOL User Conference 2011 Ludwigsburg, Germany

Heilbronn University - Institute for Rapid Mechatronic Systems (ISM): Dipl.-Ing. (FH) Oliver Vogel

- 5. Analytic Approach
- 4. Finite Element Approach
- 5. Summary

TECHNIK

INFORMATIK

1. Common Electro-magnetic Actuator Types

Hochschule Heilbronn

INFORMATIK

2. Functional Principle of Proportional Solenoids

TECHNIK

INFORMATIK

2. Functional Principle of Proportional Solenoids

3. Analytic Approach

3. Analytic Approach

Magnetic clamp or common solenoid

Total reluctance:

$$R_{tot} \approx R_{air} = \frac{\delta}{\mu_0 A}$$

Magnetic flux:

$$\Phi = \frac{\Theta}{R_{\text{tot}}} = \frac{\Theta \,\mu_0 \,A}{\delta}$$

Magnetic force (Maxwell Tensile Force):

$$F = \frac{\Phi^2}{2 \mu_0 A} = \frac{\Theta^2 \mu_0 A}{2 \delta^2}$$

3. Analytic Approach

3. Analytic Approach

TECHNIK

WIRTSCHAFT INFORMATIK

4. Finite Element Approach

4. Finite Element Approach

Simulation Results

- Animated results of stationary study for different armature positions at constant coil current.
- Highly saturated regions in magnetic bypass due to radial flux component.

4. Finite Element Approach

Simulation Results

- Increasing bypass flux with decreasing main air gap.
- Highly saturated region (bottle neck) next to tip of armature.
- Dispersed flux passing by highly saturated region generating axial force.
 - Direct flux between pole areas appears near minimum air gap.

TECHNIK WIRTSCHAFT INFORMATIK

4. Finite Element Approach

Force-Stroke-Curves:

- Proper bypass dimensions provided force-strokecurves show interval of approximately proportional interrelationship.
- Typical nonlinear ascent of force near minimum and maximum air gap.

4. Finite Element Approach

Force-Current-Curves:

- Very good proportional interrelationship between force F and coil current I for 2 mm < s < 11 mm.
- Nonlinear ascent of force near minimum main air gap.
- Nonlinear ascent of force for high currents.

ECHNIK WIRTSCHAFT INFORMATIK

4. Finite Element Approach

5. Summary

Analytic model

- Analytic approach works fine for quite simple geometries. Influence of geometric parameters can easily be identified.
- Geometries becomming more complex and materials having nonlinear characteristics analytic approach rapidly gets complicated. Simplyfications help to reduce efforts but also reduce accuracy of the model.

FEM model

- Almost no limits to complexity of geometry and material properties exist. Accuracy of results in regions of special interest can be increased on demand by refining and improving mesh quality.
- Immense postprocessing capabilities.
- Influence of geometric parameters can not be seen directly. Therefore systematic Parameter studies have to be performed.

Simulatneous application of both approaches lead to a better and deeper understanding!

TECHNIK WIRTSCHAFT INFORMATIK

Thank you very much for your kind attention!