Design and Characterization of a Novel High-g Accelerometer

S. Heß,
R. Külls, S. Nau
Fraunhofer Ernst-Mach-Institut

Stuttgart, October 27th 2011
OUTLINE

- Introduction: Novel High-g Accelerometer
 - Accelerometer design and functional principle

- Extension of COMSOL material model

- Wafer-level characterization
 - Electro-mechanical characterization
 - Thermal characterization

- Summery and outlook
EMI Accelerometer
Design and Functional Principle

- Main components:
 - Flexural plate (spring-mass system)
 - Self-supporting piezoresistive (PR) elements
 - Rigid frame

- Functional principle:
 - Inertial forces cause deflection of plate
 - Straining of piezoresistive elements
 - Change in resistance is measurement signal
Use of COMSOL for Accelerometer Development

Geometrical domain
- Piezoresistiv-element (~µm)
- Die (~mm)
- Wafer (~cm)

Physical domain
- Mechanical
- Electrical
- Thermal

Utilization
- Design
 - Sensor
 - Experimental Setup
- Characterization
- Prediction

FEM COMSOL
Use of COMSOL for Accelerometer Development

Physical domain
- Mechanical
- Electrical
- Thermal

Geometrical domain
- Piezoresistive-element (~µm)
- Die (~mm)
- Wafer (~cm)

Utilization
- Design
- Sensor
- Experimental Setup
- Characterization
- Prediction

FEM COMSOL
Extension of the COMSOL Material Model
For Single Crystal Silicon

- Material: single crystal silicon

- Implemented properties in COMSOL:
 - Anisotropy
 - Basic mechanical-, electrical-, thermal-behaviors
 - Coupling of the physical domains (e.g. thermal expansion)

- Needed description of:
 - Temperature dependence of thermal expansion
 - Temperature depended PR-effect
 - Doping dependence of the PR-effect

implemented in this work
Wafer-Level Characterization

- Wafer-level Characterization of the PR-elements on
 - Static straining of the elements
 - ... and heating of the elements

- Advantages:
 - Easy handling of many sensors
 - Large number of measurements in a short time
Electro-Mechanical Characterization
Generation of Linearly Rising Stress

- Characterization of PR-elements on wafer-level

- Idea:
 - Generate mech. stress by bending
 - Stress in bent wafer rises linearly with bending curvature
Electro-Mechanical Characterization
Generation of Linearly Rising Stress

- Design of bending mold based on COMSOL simulation

- Setup only possible with wafer-level characterization

- Simple measurement with prober

![Image of test set-up showing a Wafer, Clamp, and Bending mold with a COMSOL simulation graph showing arc length x and von Mises stress in MPa. The fracture region is marked in the graph.]

Surface: von Mises stress [Mpa]
Electro-Mechanical Characterization
On-Chip Characterization of the PR-Elements

- Analytic calculation:
 \[\frac{\Delta R}{R} \approx \sigma_l \cdot \pi_l \]
 (neglecting transverse tensions)
 - \(\sigma_l \): mech. stress \(\to \) from COMSOL
 - \(\pi_l \): PR-coefficient \(\to \) from literature

- Resistance change as expected
- Slight deviation from the theoretical value
Electro-Mechanical Characterization
On-Chip Characterization of the PR-Elements

- Significant deviation of the smallest elements

- Possible cause: "Giant piezoresistance effect"

- Effect could be used
 - But large scatter of data

Giant piezoresistance effect?
(R.He, P.Yang „Giant piezoresistance effect in silicon nanowires“; Nature Nanotechnology; Vol. 1; Oct. 2006)

![Graph showing relative resistance change vs. bending stress]
Thermal Characterization
Influence of Thermal Effects on the PR-Effect

- Examination of thermal influences on the PR-elements
- Use of the expanded material model for single crystal silicon
 - Thermal expansion
 - Temperature dependence of resistivity and PR-coefficients

\[
\begin{pmatrix}
\Delta \rho_{xx} \\
\Delta \rho_{yy} \\
\Delta \rho_{zz} \\
\Delta \rho_{yz} \\
\Delta \rho_{xz} \\
\Delta \rho_{xy}
\end{pmatrix} = \rho_0 \begin{pmatrix}
\pi_{11} & \pi_{12} & \pi_{12} & 0 & 0 & 0 \\
\pi_{12} & \pi_{11} & \pi_{12} & 0 & 0 & 0 \\
\pi_{12} & \pi_{12} & \pi_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & \pi_{44} & 0 & 0 \\
0 & 0 & 0 & \pi_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & \pi_{44} & 0
\end{pmatrix} \begin{pmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz} \\
\tau_{yz} \\
\tau_{xz} \\
\tau_{xy}
\end{pmatrix}
\]
Thermal Characterization
Simulation of Thermal Effects

- Numerical simulation of thermal effects
 - Resistivity
 - Piezoresistive coefficient

→ Significant influence on sensor sensitivity expected

- Simulation confirmed by measurements

- Strange behavior of smallest elements
Summery and Outlook

- Extension of the COMSOL silicon material model with temperature and doping dependences
- Successful use of COMSOL during the development and characterization of a novel high-g accelerometer, e.g.
 - Generating defined mechanical stresses by bending
 - Prediction of thermal influences on sensitivity
- Good agreement between numerical and experimental data

Outlook
- Parameter optimization of sensor design with parameter-sweep capabilities of COMSOL
 - Implementation of the giant piezoresistance effect
Thank you for your Attention!

Questions?

This work was funded by the
Federal Office for Defence Technology and Procurement BWB
(Bundesamt für Wehrtechnik und Beschaffung)

Further Information:

Dr. Siegfried Nau
Fraunhofer EMI
Am Klingelberg 1
79588 Efringen-Kirchen / Germany
Tel.: +49 7628 / 9050 – 685
E-mail: Siegfried.Nau@emi.fhg.de

Sebastian Heß
Fraunhofer EMI
Am Klingelberg 1
79588 Efringen-Kirchen / Germany
Tel.: +49 7628 / 9050 – 631
E-mail: Sebastian.Hess@emi.fhg.de