

Multiphysics Design of ESS-Bilbao Linac Accelerating Cavities Using COMSOL

J.L. Muñoz, ESS-Bilbao Comsol Conference 2011 Stuttgart, 26.Oct.2011

Outline

- · ESS-Bilbao project description
- Accelerating cavities
- Buncher cavity design and optimization using multiphysics software
 - \cdot Geometry optimization
 - · Thermo-mechanical studies
 - Conclusions

•

ESS-Bilbao linac

• ESS-Bilbao is a research center devoted to accelerators science and technology, whose main facility is a proton linac currently under development (http://www.essbilbao.org)

 ESS-Bilbao building and accelerator tunnel will be built in the Scientific Park of the U.P.V/E.H.U. besides Leioa Campus

ESS-Bilbao linac

Accelerating cavities

- An electric field is needed to change a charged particle kinetic energy:
 - Lorentz force: $\vec{F} = q(\vec{E} + \vec{v} x \vec{B})$
 - Change of kinetic energy... $\frac{dW_k}{dt} = \frac{c^2}{W_k} \vec{p} \cdot \vec{F} = q \vec{v} \cdot \vec{E}$
- Electric field can be provided by different

* (From W. A. Barletta, "Introduction to accelerators" U.S. Particle Accelerator School)

Accelerating cavities

- An accelerating cavity is a vacuum chamber with an AC (RF) electric field in resonance
- Synchronization between electric field and particles velocity is needed to have net acceleration -> λ -cm

Components

• Examples of linac components showing typical design issues:

"Bunching" cavity:
Axysimetric
2D geometry
optimization
3D EM, Thermal, Mech
Tuners, couplers...

Power couplers: •EM optimization •Thermal, mech, •Ceramic windows...

Buncher cavity

- 2D geometric optimization
 - Maximize figures of merit (Q, ZTT, ...) with restriction f=352.2 MHz

Cavity optimization

- Problem: Given a set of parameters X={x₀,...,x_n}, maximize function Z(X)=ZTT(X) with the restrictions f_{1TM}=f₀ and k(E_{s,max})<k₀
- The restriction for f=f₀ is very strong. This is solved in two steps:

Cavity optimization

• Optimization using different algorythms (stochastic hill climbing, genetic, ...) coded in Matlab.

• Final design not yet decided as operational parameters and not yet frozen.

Buncher cavity

Buncher cavity thermal design

 Simulations coupled with cooling (with or without CFD simulation) help to design effective cooling systems

COMSOL Conference Stuttgart 2011

Buncher cavity tuning system

• To dinamically change cavity frequency during operation, a slug tuner is used:

-Y-0.2

Other accelerating structures

 Drift Tube Linac: Tanks of about 4 and 8 m long, 520 mm diameter, with fine details and no simmetries:

Other accelerating cavities

Radiofrequency quadrupole (RFQ) has about 4 meters long with very fine detail in vane modulation

Resonant frequency and electric field profile are very sensitive to every feature of the geometry

Superconducting cavities

- The "spoke" cavities that will be built as prototypes at ESS-Bilbao have other additional difficulties:
 - Complex shapes, mechanical fabrication (in Nb),...

Conclusions

- The designs stage of a linear accelerator structures involves strong use of Multiphysics simulation tools. This is being done in ESS-Bilbao linac using COMSOL
- The main activities correspond to the RF design of the cavities, althouth thermal, mechanical and CFD are also used.
- Geometry optimization schemes (hill climbing, genetic) have been coded in Matlab and used with COMSOL to get optimum cavity shapes.

Thank you!

J.L. Muñoz, ESS-Bilbao Comsol Conference 2011 Stuttgart, 26.Oct.2011

Hill climbing algorithm

Genetic algorithm

Power couplers

Electric field, power dissipation

Impedance matching

Superconducting cavities

- SC cavities has an extra difficulty: determination of accurate surface field values.
- Solvers are accurate for frequency calculation but not very accurate with the values of surface E and H fields
- These values are used as critical values for maximum power input in the cavity, becaue field values above some limits can suppress superconductivity

Superconducting cavities

• Simple geometries with known analytic solution (pillboxes, spheres...) are used as benchmarks

Figure 5: Relative errors of the maximum surface electric fields for the double sphere. (a) Inner surface; (b) outer

* (From K. Tian et al,

"Benchmark of different electromagnetic codes for the high frequency calculation" Proceedings of PAC'09)

Magnets

- Different kind of magnets are used in accelerators (for beam focusing and bending)
- All of them suffer from numerical difficulties: (non linear materials, coils with strange shapes, ...)

