Presented at the 2011 COMSOL Conference

Multiphysics Modeling of Electro-Optic Devices

James E. Toney SRICO, inc. October 13, 2011

Outline

- Combined RF-Optical mode analysis
 - RF waveguide mode
 - Optical waveguide modes
 - Electro-optic interaction
- Combined wave propagation
 - Paraxial optical propagation
 - DC modulation
 - Time-dependent RF modulation

The Workhorse Electro-Optic Device: Mach-Zehnder Interferometer

Coplanar Waveguide Structure

Geometry for RF and Optical Mode Solving in Comsol

w= 8 μ m, g=28 μ m, t_m = 30 μ m, t_b = 1 μ m, ϵ_{b} = 3.8, ϵ_{sub} =[28,44,44] Optical waveguide profile is defined by diffusion equation

Electric Displacement Field (D_x) of RF Mode

RF Mode Effective Index and Loss vs. Frequency

Characteristic Impedance vs. Frequency

Optical Waveguide Mode Splitting with Applied E-Field

Velocity Matching Bandwidth and Half-Wave Voltage vs. Device Length

Simplified 2D MZI Model with DC Electrodes

Transmission of 2D MZI Model vs. DC Voltage

Simplified 2D MZI Model with RF Electrodes

Time-Dependent EM Wave Propagation for RF
Scalar Paraxial Wave for Optics (stationary solution at each time step)

Input/Output Waveforms @f_{in} = 1 GHz

Conclusions

- Comsol Multiphysics provides complete capabilities for modeling of electro-optic devices
- With adequate computational resources, 3D EO propagation models are possible