每页:
搜索

电气 博客文章

开发用于按需DNA合成的硅MEMS芯片

2020年 1月 21日

体细胞基因组编辑逐渐表现出能够治疗多种遗传疾病的能力。随着功能强大的基因组编辑工具 CRISPR-Cas9 的不断发展,人们对 DNA 合成技术的需求也越来越多。一家总部位于英国的初创公司正在开发一个平台,用于高度平行、精确以及可扩展的 DNA 合成,这将大大拓宽合成生物学的应用前景。 DNA 研究的新领域 传统的 DNA 合成技术是通过化学构建一串碱基,以形成一条单链的一个片段,然后将这些片段连接在一起,形成双链DNA。这种方法造价昂贵且非常耗时,这就限制了合成生物学的应用前景。一个可以合成整个基因序列的 DNA 平台将会改变每个实验室中 DNA 合成的格局。现今,总部位于英国剑桥的初创公司 Evonetix 正在开发一种芯片系统,以实现这一目标。 Evonetix 正在开发的平台上包含有多个反应位点的硅芯片,每个反应位点都可以并行合成一条不同的 DNA 链。各个位点都有一层金,上面会发生生化反应。同时也有一些保护区域,这些保护区域将位点与之间的被动区域热隔离。 在芯片实验室里做的晶片硅上的单个反应位点。图片由 Evonetix 提供。 热控制是芯片最重要的方面之一。可以通过热控制来加速或减速芯片上各个位置的反应,就像电灯开关一样打开或关闭这些位置。热控制还可以精确且独立地控制反应位点处流体体积的温度,这种控制可以创建 “虚拟热井” ,从而消除反应位点之间的物理屏障,并允许试剂可以同时流过数千个位置。这样,当含化学试剂的液体流过这些位点时,取决于温度的反应就可以以高度并行的格式进行或者关闭。 该芯片的另一个方面是其专有的错误检测方法,这种方法可以提高良率。反应位点上生长的 DNA 序列会自动纯化以消除错误,然后再将它们组合成更长的高保真基因序列。 设计目标 为了使硅芯片可以尽可能有效地合成 DNA,Evonetix 团队想到需要优化其几何形状和材料。他们对该芯片有三个主要设计目标: 反应位点处温度均匀 反应位点上单位功率的高温升速率 流体流动过程中稳定的温度分布 首先,反应位点处保证其温度均匀很重要,因为温度可以精确控制反应。Evonetix 物理负责人 Andrew Ferguson 说:“化学反应是随着温度变化而开启的,我们希望可以精确地控制反应速率。” 其次,反应位点上单位功率的高温升速率可以使芯片的总功率保持在较低的水平。最后,芯片上稳定的温度分布确保了反应可以在流体流动条件下发生。 在 COMSOL Multiphysics® 中为硅 MEMS 芯片建模 Evonetix 团队使用 COMSOL Multiphysics® 软件在其硅芯片设计上模拟 DNA 合成。Evonetix的高级工程师 Vijay Narayan 说,“我很喜欢 COMSOL Multiphysics 的用户界面。它可以让我们专注于物理学,同时确保方程的数值结果能得到很好的后处理。”他们使用 COMSOL Multiphysics 中的内置材料以及来自文献的外部材料数据,建立了具有真实材料参数的模型。 首先,该团队使用 COMSOL Multiphysics 构建芯片的单个单元(包括反应部位和加热器)的几何形状,以满足上述三个设计要求。该 ECAD导入模块 使他们能够轻松地将他们的设计从 GDS(CAD 文件格式)导入到 COMSOL Multiphysics 软件中。Narayan说:“系统的设计,尤其是对加热器的设计,可以非常精确,并且具有非常严格的设计规则,同时 ECAD 导入模块提供了更多的灵活性。” 这一功能也使设计团队能够在原型制作阶段直接向制造商提供设计图样。 包括一个反应位点的几何模型图。图片由 Evonetix 提供。 为了分析系统的稳态和瞬态热响应,研究小组使用了传热模块。他们通过使用 电磁加热 接口,让电流流经加热器来评估系统的温度控制能力。为了扩展热分析,该团队通过添加 层流 和 非等温流 多物理场耦合来描述流体流动。 […]

智能微波炉的优化设计

2019年 11月 13日

你有没有过这样的经历:当你坐下来享用微波炉加热过的食物时,咬下第一口被烫伤了嘴,而下一口却又是冰冻的。这是因为传统的微波炉并不总是均匀地加热食物。现在, Illinois Tool Works (ITW) 食品设备制造集团正在使用仿真软件模拟一种新型固态微波加热方法,以创造出智能家用厨具,可以同时加热多种食物到各自所需的温度。这个设计对于我们这些迫不及待想要将食物吃到嘴里的人来说,无疑是一个大好的消息。

COMSOL Multiphysics®在电力行业中的10种实际用途

2019年 10月 16日

有时,去现实世界中了解人们的工作情况,比查看模拟示例更有帮助。对于电力行业的人来说更是如此。在此行业中,由于设计失败和其他失误可能会严重影响客户满意度和公司利润。

三星采用仿真技术改善扬声器设计

2019年 7月 29日

当你听到三星这个名字时,你可能会想到智能手机和电视机。然而,三星还有一个目标是成为排名第一的音响公司。为此,三星美国研究中心声学主管 Allan Devantier 在加州建立了三星音频实验室。他组建了一个工程技术团队,他们的专长包括传感器、数字声音处理(DSP)、声学、编程等——但这个难题还有另外一个方面……

光子晶体的建模与应用

2019年 7月 25日

1980年,Bell Communication Research的Eli Yablonovitch提出一个思考:如何减少特定频率范围内半导体激光器的损耗?他在透明介质中切割出周期性圆孔,并观察到一定频率范围内的光发生了损耗,无法穿透。Yablonovitch发现这些结构与具有传导和价带的半导体类似,并将它们命名为光子晶体(与普林斯顿大学的Sajeev John合作)。下面讨论利用光子晶体控制光的三个例子。

在 COMSOL® 中构建磁流体动力学多物理场模型

2019年 6月 19日

COMSOL Multiphysics® 软件中的模型都是从零开始构建的,软件支持多物理场,因此用户可以按照自己的意愿轻松地组合代表不同物理场现象的模型。有时这可以通过使用软件的内置功能来实现,但有些情况下,用户需要做一些额外的工作。我们以构建磁流体动力学(MHD)模型为例介绍一下这个工作流程。

熵捕获中的DNA快速分离过程模拟

2019年 5月 9日

在调查犯罪时,法医专家有时会使用DNA证据来识别犯罪嫌疑人。然而,DNA不仅包含识别信息,还有我们基因构成的线索。DNA分离可以用来深入研究DNA链,但是传统方法很耗时。为了加快DNA的分离,密苏里科技大学的研究人员使用了COMSOL Multiphysics®软件。

如何合成天线阵列的辐射方向图

2019年 4月 4日

当我们为高速、高数据速率通信研究相控阵天线并创建原型时,通过使用天线阵列系数可以节省时间和计算成本。这样,我们就无需通过一个完整的三维波动方程来分析整个结构。 天线在物联网,IoS,SatCom 和 5G 中的应用 在当今生活中,有一些常见的射频流行语,比如物联网(IoT),空间互联网(IoS),卫星通信(SatCom)和5G。通过更高的数据速率和工作频率,使得人们满足对无线通信的需求,同时也使带宽比以前高得多也宽得多。 当我们通过5G移动网络发送或接收信息信号时,其预期的工作频率比传统移动系统的工作频率高得多,因此不可避免地会存在电磁波的明显衰减,导致信号完整性问题。为了使通信系统可以在有限的功率下使电磁波传播更长的距离,我们有必要部署一个高增益天线,该天线可以塑造像很尖锐的铅笔状波束一样的远场辐射方向图。这使我们能够在更长距离内不间断地传递信息。 大碟形天线使我们可以进行长距离通信。通过 Wikimedia Commons 在公共领域中的图像。 孔径天线,如蝶形天线和喇叭天线,将为上述目的提供足够高的增益。这些高增益天线的远场辐射方向图具有非常窄的角度扫描范围,并且电磁波的可见区域是有限的。为了扩大通信覆盖范围,可以通过使用一个万向架在机械上旋转天线来扩展其扫描能力。然而,孔径天线需要大量空间才能安装,并且可能不适合在消费类电子产品中使用(您不会想在手机上安装一个大型碟形天线!)   甲单极天线阵列示出光束扫描能力。 简而言之,天线阵列就是一组由特定空间和相位结构连接起来的天线。阵列可以克服上述障碍,并且可以根据天线单元的类型进行保形和小型化,从而形成阵列和材料特性。 如果小型化是一个设计元素,那么选择合适的天线单元非常重要。设计规范可以决定需要部署哪种类型的天线单元。 使用阵列因子的好处 尽管天线阵列的体积小于孔径型天线的体积,但与单个天线相比,其仿真计算成本仍然很高。不需要对整个结构进行完整的三维模型仿真,也不需要牺牲过多的分析精度,我们仍然可以将阵列因子相乘,从单个天线元件的辐射方向图估计天线阵列的远场辐射方向图。 定义三维模型中的均匀阵列因子表达式为 \frac{sin(\frac {nx (2 \pi dx sin\theta cos\phi + \alphax)} {2})}{sin(\frac{2 \pi dx sin\theta cos\phi + \alphax}{2} )} \frac{sin(\frac {ny (2 \pi dy sin\theta sin\phi + \alphay)} {2})}{sin(\frac{2 \pi dy sin\theta sin\phi + \alphay}{2} )} \frac{sin(\frac {nz (2 \pi dz cos\theta + \alphaz)} {2})}{sin(\frac{2 \pi dz cos\theta + \alpha_z}{2} )} 其中 nx,ny 和 nz 分别是沿 x轴,y 轴和 z 轴的阵列单元数。dx,dy 和 dz 项是在仿真中使用以波长表示的阵列单元之间的距离。alphax,alphay 和 alphaz […]


第一页
上一页
1–8 of 161
浏览 COMSOL 博客