每页:
搜索

力学 博客文章

分析融化的冻结夹杂物的影响

2020年 2月 4日

通过模拟气候变化的影响,科学家可以设计解决方案以减轻其潜在影响。气候学家希望可以解决北方寒带地区多年冻土的融化问题,并且能对这些地区产生影响和很好的正反馈。InterFrost 项目设计,以测试,评估。此处的示例通过使用热-水力方法对高于零度以上的土壤中融化的冷冻夹杂物进行建模,并与 InterFrost 标准案例进行比较。 什么是冷冻夹杂物? 冷冻夹杂物是指固体物质内部的一些冷冻物体,就像披萨(内部)需要微波加热后才能食用。不连续或零星的永久冻土是另一个例子:在多孔(但仍然是固体)土壤内部中冻结的冰块。水中的冰块属于另一类是冷冻夹杂物(冰块没有被固定)。 冷冻夹杂物的 3D 图:结果显示 9 小时后(白色表面)包裹体内的冰块、速度流线(颜色表示水头)和周围温度(等值面)。 对 COMSOL Multiphysics® 中的冻结夹杂物建模 在此示例中,您可以模拟冷冻夹杂物从冰到水这一相变过程。它是如何融化的?融化需要多长时间?还需要多长时间才能将所有冷水从冰冻的土壤中排出? 这种特定的模拟不仅对于气候学家和地球科学家特别有用,而且对于任何分析多孔介质中的相变感兴趣的人也很有用。在本教程中,我们考虑永久冻土。 给定的几何图形如下所示。这条通道长3米,宽1米。冷冻物长 33.3 厘米,位于(x,y)=(1,0.5)处,温度为 -5°C 。由于对称性,我们只模拟了通道的下半部分。 模型的几何形状,显示了初始温度分布和边界条件(零传导通量,零通量)。 有一些给定的数字,包括冷冻夹杂物的温度、水的温度、几何尺寸和水头的梯度。 此示例中有几个方程,最著名的是达西定律。您还可以假设以下内容: 传热方程不考虑热弥散 水的密度恒定不变 水动力粘度恒定不变 分析仿真结果 冷冻夹杂物仅在大约20个小时后(模拟时间)融化了。但是,需要整整 56 个小时的模拟时间才能将较低的温度从通道中全部对流出去(这是因为多孔介质比自由介质更能保持温度)。让我们来看一下模拟结果… 9小时后,土壤中仍可见明显的冷冻夹杂物。 面图显示了 9 小时后的温度分布。 56 个小时后,冰完全融化,较低的温度几乎脱离了通道。 面图显示了 56 个小时后的温度分布。 尽管此标准模型只是一个简单的示例,但它表明研究人员可以通过仿真来分析相似或更复杂的问题。例如,如果冷冻夹杂物不是矩形而是正弦形状变化的,该怎么办?此外,模拟这样的问题可以帮助气候学家确定冰何时融化并导致水饱和,这将会引发许多地质问题。 第二种情况 为了使事情变得更有趣,让我们看看如果土壤中有两个冰块会发生什么。在实际情况下,多年冻土中会有许多冷冻夹杂物。首先,在几何图形中添加另一个冰块。 现在,让我们再次运行仿真程序。您认为会发生什么? 从上面的动画中我们可以看到,冰块最初以相同的速度融化,但是第二个冰块的融化速度在大约 9 小时后变慢了。您可以观察温度梯度的变化以了解原因。 起初,这些冰块彼此独立,各自融化。 一段时间后,第一个冰块的低温会向下移动到第二个冰块处。这降低了第二个冰块周围的温差,进而降低了其融化的速率。如下图所示,这在 18 小时非常清楚。   第一个冰块在 21 个小时后融化,但是第二个冰块还有一段路要走,并且它仍会受到第一个冰块对其造成的温度梯度的影响。 第二个冰块融化需要 29 个小时(第一个冰块融化后的第 9 个小时),低温从通道中对流出需要 56 个小时。 结论 冷冻夹杂物的融化可能很难通过解析的方法来解决,但是可以使用热-水力方法来模拟简单或复杂的问题。如该标准模型,后续示例和 InterFrost 项目所示,仿真是一种强大的工具,可用于对永久冻土融化进行建模并预测北方地区气候变化的影响。 下面是如何使用 COMSOL Multiphysics 来创建有关环境问题的模型和示例: 模拟人工地面冻结方法 预测堤防结构的变形 通过单击下面的按钮,尝试使用 “冷冻物” 教程模型自己对冷冻夹杂物的融化进行建模。这样做将带您到案例库中,在那里您可以下载其他 PDF 文档和 MPH 文件(带有 […]

使用传递矩阵计算分析耵聍挡板声学

2020年 1月 28日

助听器可用于应对不同类型的听力损失,同时为了保证其功能的有效性,必须进行积极的维护。声学工程师和设计人员将耵聍挡板集成到助听器中,以保护其微型扬声器(在助听器中通常称为接收器)。使用COMSOL Multiphysics® 软件和方法,工程师可以考虑到耵聍挡板中的小尺寸几何结构并能快速仿真获得声学响应。 用耵聍挡板延长助听器的使用寿命 当谈到我们的耳朵时,我们会自然地产生耳垢,既可以作为天然清洁剂,又可以作为阻挡异物的保护屏障。然而,耳垢和 助听器 并不是最佳组合,因为耳垢可能会导致助听器阻塞,并导致使用者听到的声音失真。 为了避免助听器发生故障,可以采取预防措施,例如使用耵聍挡板来防止耳垢和水分渗入助听器。使用耵聍挡板是一种经济有效的方法,可以帮助改善助听器的功能,并延长其使用寿命。 耵聍挡板是一个很小的、可更换的防护网,用于耳内接收器(RITE)型助听器和耳道内接收器(RIC)型助听器。下图显示了助听器的装配图和耵聍挡板的位置。这种微型扬声器(也称为接收器)通过连接到助听器主体(位于用户耳朵后面)的电线供电。耵聍挡板放置在一个可以拆卸和更换的小结构中。使用 COMSOL Multiphysics 和 “ 声学模块” ,我们可以使用 5.5 版中的功能来分析耵聍挡板中的细小结构及其声学特性。 接收器装配的图示和耵聍挡板的位置。S0R 代表适用于右耳的,长度为 0 且为 Small 类型。图片由 Widex 版权所有。 在 COMSOL Multiphysics® 中导入耵聍挡板的 CAD 几何模型 本教程分为两个部分: 使用 端口 边界条件和 端口扫描 功能计算耵聍挡板的传递矩阵 在典型的测量设置中计算耵聍挡板的响应,并将其与实际测量值进行比较 将步骤 1 中计算的传递矩阵用于步骤 2 中,并在 COMSOL Multiphysics 中建立了集总传递矩阵方法。 在此模型中,NanoCare™ 耵聍挡板CAD 几何形状、接收器传递矩阵数据、耦合器传递矩阵数据、麦克风阻抗数据和测量数据均由 Widex 版权所有。耵聍挡板的几何结构如下图所示。 耵聍挡板的几何形状。CAD 几何图形由 Widex 版权所有。 传递矩阵:集总表示 传递矩阵(也称为双端口)是在光学和声学应用中分析系统中传播的波的一种有效且常用的方法。在本教程中,将计算一个包含入口和出口的耵聍挡板的传递矩阵;它代表了其子系统的集总模型。由于耵聍挡板的尺寸很小,因此在全频率范围内使用传递矩阵是理想的选择,因为在此模型中只有平面波传播(我们的计算远低于截止频率)。重要的是需要认识到,由于尺寸很小,在传递矩阵的描述中需要包括 热和粘性边界层损耗,以衡量这些损耗会对该声学系统造成多大的影响。如果您知道模型中所有组件的传递矩阵,就能快速地模拟并分析其声学特性。这也意味着可以简单快速地用同样的方法研究在同一声学系统中使用其他接收器的性能。 在 COMSOL Multiphysics 中,您可以选择定义矩阵以设置完整系统的集总表示(可能需要花费一些时间)。在本教学模型中,完整的测量设置由四个双端口组件串联组成。对于接收器(T rec),接收器管(T rt),耵聍挡板(Twg),耦合器 (Tcp) ,以及测量麦克风阻抗 (Zmic),每一个均由其传递矩阵描述。这个模型的输入是施加到接收器的电压 V in(请记住,这是助听器中的微型扬声器)。耦合器是一个 代表标准耳道 的体积。除耵聍挡板的传递矩阵外,其他所有传递矩阵都依赖于现有数据(由供应商测量或提供)。耵聍挡板的传递矩阵是由模型第一部分计算得到的。该系统如下图所示: 为了计算耵聍挡板的传递矩阵,该模型使用 热粘性声学,频域 接口,端口 边界条件和 端口扫描 功能(自5.5版起)。当端口扫描完成后,被分析的系统(此处为耵聍挡板)将自动计算传递矩阵。端口假定为平面波传播,因此必须将其放置在远离任何有几何突变的地方(例如耵聍挡板上的穿孔板)。为了做到这一点,将长度为 1 mm 的入口管添加到几何结构中。模拟区域是耵聍挡板(包括入口管)内部的空气量,如下所示。 模拟区域包括耵聍挡板内部的空气域以及外部的进气口管。 “端口功能设置” 窗口,包括 “用户定义” 、“数字” 和 “圆形端口类型” 选项。 评估耵聍挡板声学 声压和瞬时速度变化如下图所示。在该模型中,可以更改系统的频率参数和激励端口(入口和出口)。更改频率参数可以使您看到黏性边界层和热边界层的范围。黏性边界层的出现是由于黏性(无滑移条件)使空气颗粒无法在固体边界处运动而产生的。在该图中,可以看到壁面上的速度趋近于零(深蓝色)。黏性耗散(阻尼)出现在速度梯度较大的地方。这与耵聍挡板中的孔洞重合(颜色快速变化)。 出口处为端口激励,在 […]

开发用于按需DNA合成的硅MEMS芯片

2020年 1月 21日

体细胞基因组编辑逐渐表现出能够治疗多种遗传疾病的能力。随着功能强大的基因组编辑工具 CRISPR-Cas9 的不断发展,人们对 DNA 合成技术的需求也越来越多。一家总部位于英国的初创公司正在开发一个平台,用于高度平行、精确以及可扩展的 DNA 合成,这将大大拓宽合成生物学的应用前景。 DNA 研究的新领域 传统的 DNA 合成技术是通过化学构建一串碱基,以形成一条单链的一个片段,然后将这些片段连接在一起,形成双链DNA。这种方法造价昂贵且非常耗时,这就限制了合成生物学的应用前景。一个可以合成整个基因序列的 DNA 平台将会改变每个实验室中 DNA 合成的格局。现今,总部位于英国剑桥的初创公司 Evonetix 正在开发一种芯片系统,以实现这一目标。 Evonetix 正在开发的平台上包含有多个反应位点的硅芯片,每个反应位点都可以并行合成一条不同的 DNA 链。各个位点都有一层金,上面会发生生化反应。同时也有一些保护区域,这些保护区域将位点与之间的被动区域热隔离。 在芯片实验室里做的晶片硅上的单个反应位点。图片由 Evonetix 提供。 热控制是芯片最重要的方面之一。可以通过热控制来加速或减速芯片上各个位置的反应,就像电灯开关一样打开或关闭这些位置。热控制还可以精确且独立地控制反应位点处流体体积的温度,这种控制可以创建 “虚拟热井” ,从而消除反应位点之间的物理屏障,并允许试剂可以同时流过数千个位置。这样,当含化学试剂的液体流过这些位点时,取决于温度的反应就可以以高度并行的格式进行或者关闭。 该芯片的另一个方面是其专有的错误检测方法,这种方法可以提高良率。反应位点上生长的 DNA 序列会自动纯化以消除错误,然后再将它们组合成更长的高保真基因序列。 设计目标 为了使硅芯片可以尽可能有效地合成 DNA,Evonetix 团队想到需要优化其几何形状和材料。他们对该芯片有三个主要设计目标: 反应位点处温度均匀 反应位点上单位功率的高温升速率 流体流动过程中稳定的温度分布 首先,反应位点处保证其温度均匀很重要,因为温度可以精确控制反应。Evonetix 物理负责人 Andrew Ferguson 说:“化学反应是随着温度变化而开启的,我们希望可以精确地控制反应速率。” 其次,反应位点上单位功率的高温升速率可以使芯片的总功率保持在较低的水平。最后,芯片上稳定的温度分布确保了反应可以在流体流动条件下发生。 在 COMSOL Multiphysics® 中为硅 MEMS 芯片建模 Evonetix 团队使用 COMSOL Multiphysics® 软件在其硅芯片设计上模拟 DNA 合成。Evonetix的高级工程师 Vijay Narayan 说,“我很喜欢 COMSOL Multiphysics 的用户界面。它可以让我们专注于物理学,同时确保方程的数值结果能得到很好的后处理。”他们使用 COMSOL Multiphysics 中的内置材料以及来自文献的外部材料数据,建立了具有真实材料参数的模型。 首先,该团队使用 COMSOL Multiphysics 构建芯片的单个单元(包括反应部位和加热器)的几何形状,以满足上述三个设计要求。该 ECAD导入模块 使他们能够轻松地将他们的设计从 GDS(CAD 文件格式)导入到 COMSOL Multiphysics 软件中。Narayan说:“系统的设计,尤其是对加热器的设计,可以非常精确,并且具有非常严格的设计规则,同时 ECAD 导入模块提供了更多的灵活性。” 这一功能也使设计团队能够在原型制作阶段直接向制造商提供设计图样。 包括一个反应位点的几何模型图。图片由 Evonetix 提供。 为了分析系统的稳态和瞬态热响应,研究小组使用了传热模块。他们通过使用 电磁加热 接口,让电流流经加热器来评估系统的温度控制能力。为了扩展热分析,该团队通过添加 层流 和 非等温流 多物理场耦合来描述流体流动。 […]

优化耳机设计 实现自由聆听体验

2019年 12月 9日

戴着耳机听音乐已经成为了大家日常生活的一部分。工程师在设计耳机时必须保证耳机以下几个方面的质量:音质、可靠性和安全性,不过这可能极具挑战性。与普通扬声器不同,耳机的扬声器非常靠近耳朵,因此无法使用自由场设置来测试耳机的灵敏度。为了解决这个问题,声学工程师可以通过COMSOL Multiphysics®软件来进行研究。 设计更安全的耳机,改善聆听体验 在嘈杂的世界中,便携式设备的使用比以往任何时候都要多得多,耳机的使用更是无处不在。不管大家是喜欢戴有线耳机还是无线耳塞,都希望能有一个可靠、安全,并能带给人以愉悦享受的耳机聆听体验。但随着大家对耳机使用过于频繁,永久性丧失听力的可能性也在急剧增加。这是因为耳机与耳朵之间距离非常近,同时内耳具有很高的敏感性。     大声的噪音会对敏感的内耳(具体说,是对内耳的毛细胞)造成损伤,内耳的毛细胞负责向大脑传递电信号。一旦这些毛细胞丢失后,就无法重新生长,从而导致永久性听力损失。由于耳机离我们的耳朵非常近,因此不必太大声就会造成损坏。通常,超过85 dB 声压级的噪声都被认为对人体是有害的。同样的,长时间倾听低分贝的声音对人体也是危险的,并且可能导致永久性噪声诱发的听力损失。现在,许多听力设备可以达到一个很高的声压级水平(约120 dB 声压级),并且据美国整骨疗法协会称,这种范围的声压级在短短15分钟内就会对人体听力造成损害。   人类内耳的解剖结构。图片来自 BruceBlaus,Blausen.com员工(2014)。“ 2014年布劳森医学博物馆”。维基医学杂志1(2)。DOI:10.15347 / wjm / 2014.010。ISSN 2002-4436 —自己的工作。通过Wikimedia Commons在CC BY 3.0下获得许可。 幸运的是,声学工程师和耳机、助听器等声音设备设计师已经开发出了更安全的聆听方法。例如,降噪耳机就是一个很好的选择。降噪耳机可以消除周围的噪音,这样听者就不需要为了听音乐或广播而提高音量,而且有些耳机还具有自定义最大音量的功能。同时,音质也同样重要。如果我们想要收听音乐上的一些细节,高音质的声音可以使我们不必提高音量就能获得。 然而,设计更安全的耳机也极具挑战性。由于人体结构的复杂性和耳机扬声器与耳朵的距离,工程师无法像普通扬声器那样分析和测试其效果。为了对耳机进行测试,工程师们使用了人造耳。为了测试新的设计并减少原型数量,工程师们通过仿真来测试人耳声学设备的性能。就像头部和躯干模拟器一样,您可以使用多物理场仿真来评估人耳上声学设备的真实属性。 使用COMSOL Multiphysics® 对耳机进行建模 为了准确测试耳机的使用情况,该模型使用了一个用耳罩式耳机的人工耳。 首先,让我们关注耳朵(模型)部分的几何建模。耳廓(耳朵的外部可见部分)取自真实的人耳3D扫描,耳道(中耳的一部分)像一个完美的圆柱体,耳膜(通向内耳)在耳道的末端。特别地,耳膜的阻抗对于此仿真尤其重要。 声域代表三个区域: 压力室(蓝色) 外部网域(浅蓝色) 完美匹配层(深蓝色) 扬声器驱动器作为一个集总等效元件(使用 “电路” 接口)添加,以便在振膜上(黄线)施加速度。这会导致穿过膜片的压降,随后该压降耦合回电路。穿孔板(绿线)连接声域的不同腔室。 对于耳机组件,外壳(灰色)是刚性的,但如果需要,也可以将其建模为弹性结构。通过 多孔弹性波 接口,可以对泡沫(红色)进行建模,该泡沫固定在皮肤和耳机外壳的边界上。由于其复杂性,没有在此模型中考虑泡沫的可压缩性,但是该模型可以让您很好地了解到在现实中耳机是如何运作的。   耳机在耳朵上的模型设置示意图。 正如您所看到的,设置非常复杂,因此我们建议采用集总的方法对驱动程序进行建模。许多声学工程师熟悉驱动器的集总表示法——您可能已经在案例库中看到了“ 集总扬声器驱动器”模型,该模型使用许多相同的参数来对耳机和耳塞扬声器的低频性能进行建模。(有关设置此耳挂式耳机模型的确切参数和条件,请参阅教程文档。) 当然,我们也可以对换能器及其在耳机中的相互作用进行详细的建模,对电磁场和振动结构进行耦合。例如,换能器模型可以基于“ 扬声器驱动器-频域分析”模型,或者基于低功率扬声器的微型换能器示例OW 扬声器:仿真和与测量的相关性仿真与测量的关联。 最后,具有耳朵和鼓膜的真实人体皮肤阻抗条件边界如下图所示。 具有皮肤阻抗的声域边界。 评估仿真结果 在建立并求解了模型之后,换能器仿真的第一个结果通常是系统的频率响应。在这种情况下,耳膜处的声压级(SPL)这个响应被绘制于下图(蓝色曲线),同时耳机外2 cm处测得的声压级(绿色曲线)也在图中有所展示。 您通常想要实现的是与自由场聆听体验相匹配的耳膜响应,因为这将被视为一种自然的声音体验。在这个模型中,我们仅考虑系统的线性(小信号)响应。耳膜上的声压级曲线不是平顺的,这不是必需的,因为耳朵的自由场响应不是平顺的响应。 请记住,耳机模型的几何形状和参数是发明设计的,而不是工程设计的。该模型的目的是展示如何执行分析。 响应会受到500 Hz以上的不同谐振的影响,而且看起来系统对外界非常开放,这导致了低于500 Hz的滚降。如果你仔细观察模型,会发现主要泄漏的是泡沫(您可以通过更改泡沫的性质进行测试),而不是模型中的穿孔板/网孔。蓝色和绿色曲线之间的差异表明了耳机的隔音效果有多好。 在耳膜(蓝色曲线)和耳机外2 cm处(绿色曲线)测得的系统响应。 使用仿真的好处之一是可以将声场可视化。在系统内部进行测试是困难的,识别共振就是其中一大难点。下图显示了5000 Hz时的声压级分布。无论是扬声器后面的音量,还是耳机和皮肤之间的音量,都能清楚地看到共振(声压级较低的区域)。 5000 Hz时折旧截面上的声压级。 您还可以对新设计进行虚拟建模研究。例如,通过更改耳机的孔隙率和穿孔网格的设计来进行测试。您可以添加一些多孔材料来控制共振。通过模拟,您还可以在泡沫和皮肤之间引入泄漏,并研究它们对响应的影响。你也可以将耳朵周围和皮肤上不同频率的声压级可视化(下图)。从这些结果中,你可以研究泡沫的效果,泡沫的阻尼特性有助保护耳朵免受外界噪音的影响。下面,您可以清楚地看到泡沫在最低频率下的效果,泡沫具有更好的阻尼特性。 皮肤上的声压级分布和泡沫在不同频率下的位移。 通过仿真,设计人员可以准确地测量耳机扬声器在听者耳朵附近的灵敏度,从而帮助他们优化收听体验,同时最大程度地降低听力健康风险。 拓展阅读 单击下面的按钮,尝试一下自己对耳罩式耳机进行建模。这样可以带您进入案例库中,在那里您可以找到文档,并使用有效的软件许可证下载相关的MPH文件: 试用教程模型

通过流体动力学研究煎饼制作的最佳方法

2019年 11月 6日

对于物理学家来说,随时随地都可以寻求设计和技术的灵感。对于一个饥饿的物理学家而言,灵感可以在进餐时迸发出来。举一个很好的例子:一个经验丰富的厨师很容易用一种烹饪方法来制作煎饼,但对于一个家庭厨师来说,制作煎饼就会带来挫败感。在寻找怎样制作出完美煎饼的过程中,两名研究人员使用模拟方法来研究是否可以更好地烹饪这道经典美食……

使用COMSOL评估人耳声学设备性能

2019年 9月 6日

通常,助听器、移动电话和耳机都需要高质量的声音,使用户可以拥有良好的听觉体验。为了评估设计的性能,音频工程师利用头部和躯干模拟器(HATS,一种模仿成人听力环境的人体模型)创建了样机。为了更经济有效地处理这一问题,可以使用COMSOL®软件模拟这种设置,进行虚拟声学测量。

三星采用仿真技术改善扬声器设计

2019年 7月 29日

当你听到三星这个名字时,你可能会想到智能手机和电视机。然而,三星还有一个目标是成为排名第一的音响公司。为此,三星美国研究中心声学主管 Allan Devantier 在加州建立了三星音频实验室。他组建了一个工程技术团队,他们的专长包括传感器、数字声音处理(DSP)、声学、编程等——但这个难题还有另外一个方面……

地震中建筑物的稳定性分析

2019年 7月 5日

1996年,我和20多名二年级的学生挤在南加州的一所小学教室的桌子下面。世界各地的人们都会经常举行这种“地震演习”,尤其是在地球断层线上的地方,以备灾难发生时人们可以及时避难。还有别的应对方法吗?有,我们可以分析受地震影响的建筑物的结构稳定性。


第一页
上一页
1–8 of 190
浏览 COMSOL 博客