

Electrical and Computer Engineering Research Facility

University of Alberta, Edmonton, Alberta

Optimization of Thin Film Heater/Sensor Design for Miniature Devices Using Finite Element Analysis

Viet N. Hoang, <u>Govind V. Kaigala</u>, Christopher J. Backhouse

Femlab-2005, Boston

Need for thin film resistive heaters

- Compatible with microfluidic devices.
- Standard semi-conductor fabrication procedures.
- Very low power consumption.
- Rapid change in temperature – both heating and cooling.
- Low thermal mass.
- Precision localized heating.

Peltier elements: **3-5 °C /second** Thin film resistive heaters: **20-50 °C/second**

Aims and objectives

- Develop a paradigm for thin-film resistive heaters to derive rules for design.
- Parametric study to define the temperature uniformity of the resistive heaters.
- Simultaneous heating and temperature sensing capabilities.
- Precision temperature stability.

Applications

- Microfluidic devices for practical medical diagnosis applications.
- Require complex bio-chemical reactions to be catalyzed at precision temperature environment.
- Low-power, portable, economical and localized heating applications.

Principle of resistive heating

Involves passing a direct current through the film. The power generated due to the resistance is calculated by Ohm's law.

It is assumed that <u>almost</u> all the electrical power generated is dissipated into heat.

$$\nabla^2 T + \frac{q_{gen}}{k} = \frac{\rho c}{k} \frac{\partial T}{\partial t}$$

T is a function of location and time, Q_{gen} is the heat generated per unit volume K is the thermal conductivity of the material

 ρ is the mass density of the material. C is the specific heat of the material.

Femlab-2005, Boston

Need for finite element analysis

- Not all of the power dissipation is uniform.
- Minor variations of the heat-flux path generates non-uniformities.
- Temperature uniformity is a complex function of the geometry and environment of the thin-film heater.

First principles modeling would be infeasible!

Femlab-2005, Boston

Slide 6

Geometry of representative chip

Boundary Conditions

- •Natural convection and radiation on top surface.
- •Constant Room Temperature on the sides.
- •Thermal insulation on the bottom surface.

Material properties used in FEA simulations

	Material	Thermal Conductivity (W/m·K)	Specific Heat Capacity (J/kg·K)	Density (kg/m ³)
	Glass	1.11	830	2200
	PDMS	0.18	1100	1030
	Water	0.58	4187	1000
	Platinum	72	133	21500
Femlab-2005, Bo	ston	Slide 7	1	1

Calibration experiments

Least squares method

Differs from bulk materials Resistively = f(temperature)

Femlab-2005, Boston

Validation Experiments – approach 1

For non-optimized heaters testing was done - Apply a known current and measure the resulting voltage

Validation experiments – approach 2

IR image of actual chip

Simulation outcome with different heater geometries

Single ring heater/sensor geometry

Femlab-2005, Boston

Slide 12

Environment

- General heat transfer (htgt) mode of the heat transfer module was used to simulate the heat transfer.
- Lagrange quadratic elements
- 200K -300L dofs.
- The metal film being very thin were modeled using the shell mode in 2D (shell conductive media DC).

Parametric study

Primarily the temperature dependency is a complex function of -

- (a) Electrode pad connection width (x).
- (b) Proximity of chip edges (d).
- (c) Chamber height (h).
- (d) Heater radius (R).
- (e) Material used to fabricate the chip.(f) The temperatures to which the chip is heated.

Requirement-I: Temperature uniformity of the heating/sensing element

(a) Electrode pad connection width (x).(b) Proximity of chip edges (d).

Help avoid using separate elements for heating and sensing!

Femlab-2005, Boston

Effect of electrode pad connection width (x)

Effect of proximity of the chip edges (d)

If edges are too close, heater temperature distribution very sensitive to external boundary conditions.

Requirement-II: Temperature uniformity chamber

(c) Chamber height (h).(d) Heater radius (R).

Uniform temperature might enhance uniform reaction progression within the fluidic chamber!

Femlab-2005, Boston

Slide 18

Effect of chamber height (h)

Effect of heater radius (R)

Femlab-2005, Boston

Slide 20

Summary

- Pt thin films useful for catalyzing many bio-chemical reactions requiring precision temperature.
- Heater and the temperature sensing element the same, hence, less interconnects facilitate scaling for high throughput applications.
- Low power, localized heating elements in place that forms a practical and portable diagnostic assay.
- Design such that no additional bio-compatible layer is required; heat flow engineered such that non-contact heating with bio-fluids is efficiently possible.

