Transient Electromagnetic-Thermal FE-Model of a SPICE-Coupled Transformer Including Eddy Currents

Holger Neubert*,1, Thomas Bödrich1 and Rolf Disselinkötter2

1 Technische Universität Dresden, Institute of Electromechanical and Electronic Design, Germany,
2 ABB AG, Corporate Research Center Germany, Ladenburg, Germany

* Corresponding author: D-01069 Dresden, Germany, holger.neubert@tu-dresden.de

Excerpt from the Proceedings of the 2011 COMSOL Conference in Stuttgart
Outline

1. Introduction
2. Modelling Approach
3. Electromagnetic FE Model
4. Thermal Model
5. Coupled Time-dependent Simulation
6. Summary
1. Introduction

Current Transformers

- Used to measure high currents in power grid systems
- Primary winding:
 - Normally only one turn (the power line)
- Secondary windings:
 - Some hundreds up to thousands,
 - Close to short-circuit condition

\[i_2 = \frac{1}{N_2} i_1 \]

Quelle: Bienzle (Wikimedia)
Bar-type Current Transformer (Low Voltage)

Pole mounted Current Transformer (High Voltage)

Quelle: ABB Stotz S&J

Quelle: ABB
2. Modelling Approach

Coupled Model
- Electromagnetic FE model of the transformer
- Network models of the primary and secondary circuitry
- Thermal FE model of the transformer
Electromagnetic FE model

Thermal FE model

\[T(r) \]

\[q(r) \]
3. Electromagnetic FE Model

- Parametric geometry
- Ampère's circuital law and Faraday's law of induction
- \(mf \) mode (magnetic field only) for time-dependent simulation
- Non-linear magnetic material behavior in \(\mathbf{H} = f(\mathbf{B})\mathbf{e}_B \) form
Modelling of Eddy Currents

- **Power Line (Primary winding):**
 - Sinusoidal primary current \(i_1(t) \) is modeled as a total current density \(J_z(r,t) \) inside of the bus bar
 - \(J_z(r,t) \) can not be imposed directly as an external current density
 \[
 J_z(r,t) = J_{ez}(r,t) + J_{iz}(r,t)
 \]
 - A global equation (ge mode) determines \(J_{ez} \) inside of the bus bar by
 \[
 i_1 - I_{prim} = 0
 \]
 - \(J_z(r,t) \) in the primary conductor is calculated from
 \[
 I_{prim} = \frac{1}{L_{prim}} \int J_z \, dV
 \]
Eddy Current in the Power Line

- Simulated z-component of the total current density with skin effect in the primary conductor ($i_{1\text{peak}} = 1000 \text{ A}$, $R_{\text{secExt}} = 20 \Omega$, $t = 0.23 \text{ s}$)
Modelling of Eddy Currents

- Secondary windings:
 - Modeled as bulk material (eight prismatic bodies)
 - Conductivity is set to 10 S/m to suppress eddy current effects
 - Secondary current $i_2(t)$ is modeled as an external current density, derived from the induced voltage
Eddy Current in the Power Line

- Simulated z-component of the total current density with skin effect in the primary conductor ($i_{1\text{peak}} = 1000 \text{ A}$, $R_{\text{secExt}} = 20 \Omega$, $t = 0.23 \text{ s}$)
Non-linear Magnetic Behavior

- $H = f(|B|)e_B$ form avoids circular variable definitions in constitutive relations
- Several approximation approaches with remarkable influence on solution time

<table>
<thead>
<tr>
<th>Approximation approach</th>
<th>Relative solution time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piecewise cubic interpolation</td>
<td>1.0</td>
</tr>
<tr>
<td>Global rational function</td>
<td>1.3</td>
</tr>
<tr>
<td>Linear interpolation</td>
<td>4.0</td>
</tr>
<tr>
<td>Cubic spline interpolation</td>
<td>≈ 100</td>
</tr>
<tr>
<td>Nearest neighbour</td>
<td>no convergence</td>
</tr>
</tbody>
</table>
Non-linear Magnetic Behavior

- $H = f(|B|)e_B$ form avoids circular variable definitions in constitutive relations
- Several approximation approaches with remarkable influence on solution time
- Cubic spline interpolation may lead to a non-monotonic curves
Coupling with SPICE Components

- \textit{cir} mode
- Sinusoidal current source at the primary side
- External load resistor at the secondary side coupled to the secondary windings (External I vs. U element)
- Variable

\[
V_{\text{sec}} = R_{\text{coil}} i_2 - V_i
\]

\[
V_i = \frac{N_2 (V_1 + V_2 + \ldots + V_8)}{A_{\text{sec}}}
\]
4. Thermal Model

- Temperature-dependent electrical conductivity of the conductors
- Heat conduction in solids applying the *ht* mode
 - Heat sources (mean value over a period of the losses field)
 - Heat conduction in solids and narrow air gaps,
 - Thermal contact resistances between solids which are in mechanical contact
 - External convection on solid-air interfaces applying empirical correlations
- Time-average of the local power loss density in the time interval $[0, t_i]$

$$\overline{q}(r, t_i) = \frac{1}{t_i} \int_0^{t_i} \frac{[J(r, \tau)]^2}{\sigma} d\tau$$
Thermal Model
5. Coupled Time-dependent Simulation

- Time-dependent simulation
- Time scales of the electromagnetic and the thermal model are very different
- Bi-directionally coupling of the electromagnetic and the thermal model
- Iterating alternate solutions:
 - Stationary study steps of the thermal model
 - Time-dependent study steps of the electromagnetic and circuit model
Convergence

\[i_{\text{peak}} = 1000 \, \text{A}, \quad R_{\text{secExt}} = 20 \, \Omega \]
Currents

- Simulated primary current i_1 and secondary current $i_2 \cdot N_2$ ($i_{1\text{peak}} = 1000 \, \text{A}$, $R_{\text{secExt}} = 25 \, \Omega$)
- Imperfect transformer coupling due to the air gaps in the core
Currents

- $R_{\text{secExt}} = 1 \, \text{k}\Omega$
- Deformation of the sinusoidal current due to magnetic saturation in the core
Current density

- $i_{1\text{peak}} = 1000 \text{ A}, \ R_{\text{secExt}} = 25 \ \Omega$
Flux density

- \(i_{1\text{peak}} = 1000 \, \text{A}, \ R_{\text{secExt}} = 25 \, \Omega \)
6. Summary

Transient Electromagnetic-Thermal FE-Model of a SPICE-Coupled Transformer Including Eddy Currents

- Time-dependent simulation of a transformer coupled to an external circuitry
- Non-linear magnetic material properties based on experimental data
- Eddy current effects are included using a global equation
- Time-averaged power loss density distribution
- The bi-directionally coupled thermal model considers the influence of the temperature on electrical material properties
- Future work will focus on
 - consideration of the transformer core lamination,
 - the anisotropic material behaviour inside of the coils
Thank you very much for your attention.