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= Questions:




! Analxtical theorx for full eIIiEsoid

<L | xR

A =633 nm




’ Analxtical theorx for full eIIiEsoid

l Frequency dependence

> Field enhancement factor y = ‘ € ‘
14+ (e— 1)?
Geometrical dependence
*® 1
» Depolarization factor A(r) = 272 j 3 ds
O (s+1)2 (s+1r2)

> Permittivity £(w)=¢(w)—je" (w)

Plasmon and antenna effects are included
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! Analxtical theorx for full eIIiEsoid

Antenna resonance :

Odd integer multiple of half a wavelength
A+ A

X =N —

2

n=0,1,2,...



! Analxtical theorx for full eIIiEsoid

Antenna resonance :

Finite Element Time Domain (FETD) calculations

J. Appl. Phys., Vol. 89, No. 10, 15 May 2001



’ FETD

A =633 nm

y

J. Appl. Phys., Vol. 89, No. 10, 15 May 2001
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FETD

" Antenna resonance ' ' ' ' '
conductor (= 10°+ 1050
---- sten (e=4.78 + 21.181)°
A =633 nm = tungsten ( )
10+ |
E @D |
A
el é _
X=n +2 : » < N
o
& 5L d
:
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X[\

Calculated field enhancement at the end of small ellipsoid.
Dephasing effects reduce the field enhancement for a greater
than 0.5 A
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! Analxtical theorx for full eIIiEsoid

Plasmon resonance :

£
y_|1+(£—1)A|

Re|l + (e(w) —1)A] =0



’ FETD

A =633 nm




= Plasmon resonance:

Re[l+ (e(w)—1)x Al =0

electric field enhancement (y)

Calculated field enhancement for gold ellipsoid at 633 nm. Very large
enhancements are found for small size, due to plasmon resonance. Values
calcuated agree resonably well with analytical resutls at small sizes. Dephasing
effects drastically decrease at larger size. When X is greater than 0.5\, field
enhancement is smaller than 5

J. Appl. Phys., Vol. 89, No. 10, 15 May 2001
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\ But!

The tip apex is not a full ellipsoid but a hemi-ellipsoid

l

Modeling the tip as Au hemi-ellipsoid

l

Solving the Maxwell equations in frequency domain

l

Finite Element Method (FEM) using COMSOL Multiphyiscs
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1 COMSOL simulation for Au hemi-ellipsoid

A=630 nm| v
0=4.76x10" H:

Perfectly matched layer to
absorb the scattered light
emitting from the tip apex and
substrate (to avoid reflecting

AN VAT

Direction of propagation

By
<
T

i
v,

back to the system)
Polarized in the Z direction
i
I—» Y

; . s -—-100
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Computational method

—_

Frequency domain form of Maxwell’s equations describing the electric fields inside
of the domain, at a known excitation frequency

Electric Field

¥
V(i 'VxE)-ki (e, - jo/we,)E=0
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COMSOL webinar



1 COMSOL simulation for Au hemi-ellipsoid

Electric Field

v
V x (,u;lV xE)—k(f(gr —ja/wgo)E =0

U 0

Relative Permeability Vacuum Permittivity

Wavevectorin Free Space o
P Excitation Frequency

Relative Permittivity Electric Conductivity
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COMSOL simulation for Au hemi-ellipsoid

Loss terms:

Vx(y,TIVxE)—k{f(&: —jo'/a)EO)E =)

.'.I

f - n [} ’ n
J”r - Jur o j!f.r* 8;- = Er . l 5?‘
< Ceo
Mostly applicable E(t) :
for ferrites, with E— @
low conductivity Conduction

Dielectric losses current losses
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1 COMSOL simulation for Au hemi-ellipsoid

A=630 nm| v
0=4.76x10" H:

Perfectly matched layer to
absorb the scattered light
emitting from the tip apex and
substrate (to avoid reflecting

AN VAT

Direction of propagation

By
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i
v,

back to the system)
Polarized in the Z direction
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1 COMSOL simulation for Au hemi-ellipsoid

Result:

Tip apex radius = 10 nm

Gold
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1 COMSOL simulation for Au hemi-ellipsoid

Comparing the result:

TABLE 1: Field Enhancement near the Sample Surface
Plane at 7 = 0.125 nm and x = 0 nm for Different
Tip—Substrate Material Combinations for Tips with R = 10
nm and @ = 45° atd = S nm

surface Au tip W tip Si tip glass tip
Au 49 8 14.2 9.2 2.5
W 254 10.1 7.1 2.3
‘ i 8.7 6.2 2.2
glass 8.4 5.0 3.9 1.8
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1 COMSOL simulation for Au hemi-ellipsoid

Which parameters can effect the enhancement of electric field?

=  Apex radius

= Substrate

= Radiation wavelength
= Tip-sample distance

= Tip and substrate material

= Geometrical shape

= Tip and substrate materials L-.”
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1 COMSOL simulation for Au hemi-ellipsoid

= Dependence of electric field enhancement at optical regime on the apex radius with
and without substrate

Eoptic = —9.90 + 1.05 i

# Tip without substrate W Tip with substrate Substrate

140 -

_ Ol
;::120— A=630nm
Emu_ [ =50nm
c 80 -
£ 60 -
=
:w : .
] i * ¢
2 20 T T
U' | | | | | |
0 2 4 ] 3 10 12

Apex radius (nm)
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1 COMSOL simulation for Au hemi-ellipsoid

= Dependence of electric field enhancement at THz regime on the apex radius with and
without substrate

ery = —1.4 X 10° + 1.6 X 10°

‘ # Tip without substrate M Tip with substrate Substrate

14 1 A=0.3mm
£ 12 | [ =50nm n
EIU - o
. +
o * = o,
E 8 - . . . . [ | B
+
€ 6 - ¢
a
T 4 -
a
Tz,
u I I I I I |
0 2 4 6 B 10 12

Apex radius (nm)
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COMSOL simulation for Au hemi-ellipsoid

Antenna and plasmonic properties?
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COMSOL simulation for Au hemi-ellipsoid

Antenna and plasmonic properties with associated dephasing effects?

. fregil]=475861e1d Slice: ermw,normEED (1)
esult: =

Direction of propagation

——>

Polarized in the Z direction




1 COMSOL simulation for Au hemi-ellipsoid

Antenna and plasmonic properties with associated dephasing effects?

Result: 20 A=630nm
Apex radius=10nm
+
- lve=oa

YT lixG-Da g 607 .
= s
o
= +

1 1 g 40 .
A(r) = 52 J 3 ds 5 +
O (s+12 (s+71r72) T +
2 20- ! e
+ e ‘o
Re[l+ (e(w) —1)xA]l =0 *++*
u | | | | * * * * |
0 0.1 0.2 0.3 0.4 0.5

Height of the tip with the cylinder shaft (L/Lambda)
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= Plasmon resonance:

Re[l+ (e(w) —1)xA] =0

A(r) = 1 joo 1 ds
212 Jo (s + 1)% (s+1r2)

electric field enhancement (y)

40 -

20+

(A=633 nm, &= -10.84+0.7621)1
x/y=3.0

0
00
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0.2

03 04 05 06
X /A

Calculated field enhancement for gold ellipsoid at 633 nm. Very large
enhancements are found for small size, due to plasmon resonance. Values
calcuated agree resonably well with analytical resutls at small sizes. Dephasing
effects drastically decrease at larger size. When X is greater than 0.5\, field
enhancement is smaller than 5

J. Appl. Phys., Vol. 89, No. 10, 15 May 2001
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‘ COMSOL simulation for Au hemi-ellipsoid

" Plasmon resonance for Au hemi-ellipsoid:
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‘ COMSOL simulation for Au hemi-ellipsoid

How about THz?




1 COMSOL simulation for Au hemi-ellipsoid

&
y_‘1+(€—1)A‘




1 COMSOL simulation for Au hemi-ellipsoid

Antenna and plasmonic properties with associated dephasing effects?

25000 -
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Height of the tip with the cylinder shaft (L/lambda)
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1 Conclusion

= Antenna and plasmon resonances are two different underlying physical origins of
the field enhancement at the end of a sharp tip.

= Dephasing effects can severely decrease field enhancement at optical regime.

n At THz regime, the antenna effect is dominant leading to an extremely high field
enhancement

= For Au hemi-ellipsoid illuminated by A= 630 nm, plasmon resonance can be

obtained whenr = 2

= COMSOL simulation agrees with the analytical results



1 Outlook

n Combining RF and Heat transfer modules together

= Measuring the total dissipation at the system

Adding cantilever to the tip

Coating the tip and cantilever
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