

Hydrodynamic Flow Focusing for Microfluidic Cell Sorting Chip

: Ninad D. Mehendale

Supervisor: Dr. Debjani Paul

Portable pathology lab (CBC Machine)

What is cell sorting?

Cell sorting is the ability to separate cells according to their properties.

What is cell sorting?

Cell sorting is the ability to separate cells according to their properties.

What properties?

What is cell sorting?

Cell sorting is the ability to separate cells according to their properties.

1)Size

2)Shape

What is cell sorting?

Cell sorting is the a

1)Size

2)Shape

3)Deformability

Hydrodynamic flow focusing

The flow from a small central inlet squeezed by two side streams (called "sheath" flows).

What is Microfluidics?

Microfluidic chip

<u>Controlled</u> fluid flow (~<u>nL–pL</u>) through <u>micron-sized</u> channels

Flow is always "laminar" in microfluidics

Hydrodynamic flow focusing : Need

- Cells should arrive one by one at sorting location
- A. Ease of image processing algorithm
- B. Ease of detection (like in FACS)

Hydrodynamic flow focusing : Need

- Cells should arrive one by one at sorting location
- A. Ease of image processing algorithm

Hydrodynamic flow focusing : Need

Cells should arrive d sorting location A. Ease of image p algorithm

Flow Flow B. Ease of detectio

Flow

C. Cells should be in center of the channel and not near walls this enables clearing of cell clogging by reverse flow

Clogged cells

COMSOL simulation of flow focusing device

Flow focusing experimental setup

Flow focusing experimental setup

Effect of varying input flow rate keeping buffer flow rate constant

Input flow rate (Q2) $= 5\mu l/m$ to $14\mu l/m$ Buffer flow rate (Q1) $= 10 \mu l/m$ Q1/Q2 = 2to

Q1/Q2 = 0.7

Effect of increasing central flow rate

Minimum pinched flow width with our device

Average width =7.95 μ m

Simulation Vs. practical

Conclusions

There exist upper and lower limit to focusing width achievable by controlling flow rates.

The confined width is not a function of flow rates but the ratio of flow rates.

Future scope

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore