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A micro-scale fluidic phenomena that can be used to manipulate liquid
droplets

e Manipulation of liquid by
modifying the surface

properties by applying voltage

Solid-Liquid
Charge Interfacial Contact Angle
Accumulation Tension Change
Decrease

Lippman-young equation: Top: A water drop placed on a

o Ca., hydrophobic surface with a high contact
C IOk ﬂv angle. Bottom: Electrowetting of the
surface. [Ref. Shamai et al.]
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What 1S EWOD actuation? 2issoston

Open configuration

Stationary

Moving

—>

[ OFF [ ON |

Basic operations
Top view
Droplet generation

Droplet Merging

r 'l'
& =

|

* By Creating asymmetric contact
angle around meniscus, net

pressure difference can be created
and droplet can move [2] -E_.

Cross-sectional view

Droplet Splitting Droplet Transport

*Parallel plate EWOD device

Droplet Blanket reference
electrode

eLess sample volume
. i Dielectric Hydrophobic
*Less contamination layers K Jlayers
eFaster reaction : ' Tl-
. Substrate /
*Flexible

Driving electrode Driving electrode

*Portable (Float) (Activated)
Ref. Hsien-Hua et al. 2
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 Objectives

Droplet motion + Cooling of a hotspot

Objectives & Motivation
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I
1 mm

Top chip

Modeling coupled physics:
g p p y (I\,)-—imo un'] \' ;‘f‘t?on Droplet

(Fluid flow) (Heat transfer)

Bottom chip

Comparing results from numerical oN

OFF k OFF

I\Ea)

oFF N\, oN
|

(b)  q

OFF

N

modeling with experiments

Cross-section of DMF Cooling Chip

Motivation
Understanding the physics

Overcome challenges in experiments

e Parametric study of geometric dimensions

e Complicated EWQOD fabrication

Easy approximate temperature measurement
Parametric study for optimum heat transfer performance
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Top substrate (Silica glass) Hotspot

(.5 mMmmx.5 mm

yL Bottom substrate Flu.id domain
“(Silica glass) (Air & Water )

(10mmx10mmx.1 mm)

Geometry for numerical modeling



N COMSOL
V& s i CONFERENCE
$1€§R§ N umemcal Formulatlons 20/5BOSTON

ARLINGTON

* Governing equations:
 Incompressible, constant properties flow
* Navier-stokes equations:

Vu=20 shear and air drag | | actuating force
9,

p(a—':+u. Vu) + Vp — uViu = Fg

F, =okS(@)Ve k=curvature of the interface

o=surface tension.

6=Dirac delta function (only non-zero at the
interface

@=Phase field variable

* Energy equation:

pCpuVT-I—pCpaT/at:V(KVT) Cp=SpeCifiC heat Capacity

p=Density
K=Thermal conductivity
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e Use of Two-phase flow, Level Set and Two-phase flow, Phase field interface
for interface tracking

e Advection equation for interface tracking:

do YA y is the mobility (m3-s/kg), A is the
At +u. Vo = V'E_sz mixing energy density (N) and € (m) is
(For phase-field method) the interface thickness parameter and
is referred to as the phase field help
variable
e Use of Heat Transfer in Fluids interface and coupled to two-phase flow

interface

K=Thermal conductivity
C , = Specific heat capacity
K=(K water_K air )%¢ water'l-K air p = Density

C p=(C water” C air)xd) water T C air
p:(p water~ P air)xd) watert P air

10/20/2015
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="Boundary Conditions

00

Defined contact angle
corresponding to zero
voltage (Wetted wall or
Navier slip condition

Electrodes

* Defined contact angle corresponding to voltage V(t) (From Young-Lippmann
equation) (Wetted wall or Navier slip condition) 1
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="Boundary Conditions

Constant heat flux (Boundary heat source) Convection to air
Other boundaries
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e Geometrical dimensions

Parameter name
Electrode dimension
Channel height
Hotspot dimension

Top & bottom plate thickness
Simulation Parameters

Name

Surface tension, o
Applied voltage, V,_
Initial contact angle,8,
Dielectric thickness, d

Heat Flux, g”
Dielectric constant, €,

Convection co-efficient, h,;
Initial temperature, T
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Dimension (mm)
2%2

0.1

0.5x%0.5

0.7

Value

.072 [N/m]
150[V]
118[degree]
5[um]
36.6[W/cm?]
2.5
5[W/(m.K)]
298.15 [K]
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At t=0 ms At t=20 ms At t=40 ms At t=60 ms At t=100 ms

Experiment
o SRR i et I bR e "l..
gl : 1 i B ; y
R : -.:.—___ 1 q .- i H .. i '.-.. . .Jll

F: B
. . !
- Ll | iF Pl T
Phase Field method

Level Set method

* Phase field method gives more accurate and smooth profile
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4 .50E-07 . ] i
—Phase field *Phase field: 30% mass
it loss after 40 ms
&D 4.00E-07
) —=Conservative .
A 35007 level set *Conservative level set:
e Guarantees mass
E 3.00E-07 conservation
o
o
| .
0 2.50E-07
2.00E-07

0 0.01 0.02 0.03 0.04 0.05

Time(s)

e Mass conservation is affected by numerical tuning parameters such as:
e Mobility tuning parameter
e Interface thickness
* Tuning parameter
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Results
Parametric study for phase field method

Mobility tuning parameter, x

mass, m (kg

4.50E-07
4.00E-07

3.50E-07 —+--

3.00E-07
2.50E-07
2.00E-07
1.50E-07
1.00E-07
5.00E-08
0.00E+00

*Mass loss increases with decrease in

em|appa 1
em|appa .1
kappa .01

kappa .001

0.05

Time(s)

0.1

0.15

value of mobility tuning parameter

10/20/2015

4.50E-07

1.50E-07
1.00E-07
5.00E-08
0.00E+00
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Interface thickness, €

e thickness "h/4"

e—thickness h/8

0 0.05 0.1 0.15

Time(s)

*Mass loss increases with decrease in
interface thickness
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Convection evaporation Convection
Simulation Experiment
Dwell Exit
'\E:c\ry )47\ / R - e T
. ‘om expeyimer i 4: 366 W/cmz No drop i
e With drop \ : : |
No drop AN 7 )jiﬁ >/ | 366 W/em' :
" /i | , | —20W/ent" Nodrop
o | | | ——20W/ent
% * | —8.7 ‘l."'."/cm2 No drop
g » e —— 8.7 W/en
3 S NS S R S e
0 0.05 . 0.1 015 02 i o :;_ é E; All. é é ; é i
Time, s - . ;
i Time (s):
Average surface temperature of hotspot
e Temperature drop from simulation: 18 °C
e Temperature drop in experiment: 20 °C
10/20/2015
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e 3-Dimensional EWOD droplet motion has been successfully modelled
using two methods of interface tracking of two-phase.

e Two Issues:
e Mass loss

e Slight inaccuracy in results due to negligence of hysteresis angle,
contact line friction and evaporation heat transfer

 Droplet motion results have been validated with the experiment

e Numerical modeling of cooling of a hotspot has been demonstrated by
solving multiphysics problem

e Future study includes modeling heat transfer enhancement due to
evaporation by an EWOD actuated droplet
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