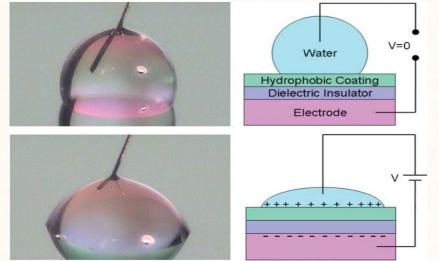


Numerical Modeling of 3D Electrowetting Droplet Actuation and Cooling of a Hotspot

Mun Mun Nahar, Govindraj Shreyas Bindiganavale, Jagath Nikapitiya and Hyejin Moon


University of Texas at Arlington

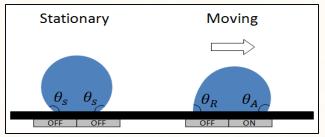
What is EWOD?

- A micro-scale fluidic phenomena that can be used to manipulate liquid droplets
- Manipulation of liquid by modifying the surface properties by applying voltage

Lippman-young equation:

$$Cos\theta(V) = Cos\theta(0) + \frac{C_d}{2\gamma}V^2$$

Top: A water drop placed on a hydrophobic surface with a high contact angle. **Bottom:** Electrowetting of the surface. [Ref. Shamai et al.]



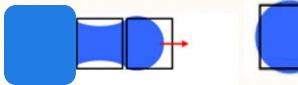
What is EWOD actuation?

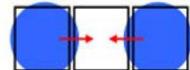
COMSOL CONFERENCE

2015 BOSTON

Open configuration

 By Creating asymmetric contact angle around meniscus, net pressure difference can be created and droplet can move [2]

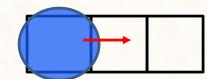

Parallel plate EWOD device

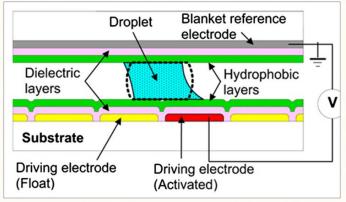

- Less sample volume
- Less contamination
- Faster reaction
- Flexible
- Portable

Basic operations

Top view

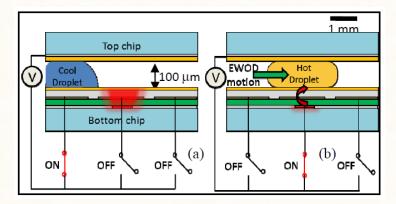
Droplet generation **Droplet Merging**




Droplet Splitting

Cross-sectional view

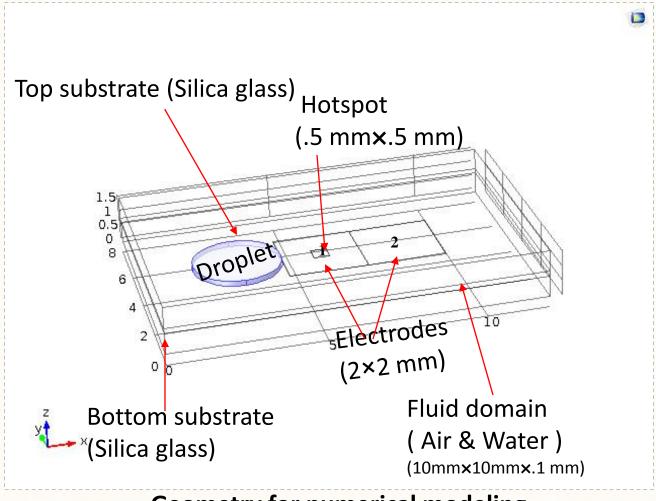
Ref. Hsien-Hua et al.



Objectives & Motivation

Objectives

- Modeling coupled physics:
- Droplet motion + Cooling of a hotspot (Fluid flow) (Heat transfer)
- Comparing results from numerical modeling with experiments


Cross-section of DMF Cooling Chip

- Motivation
- Understanding the physics
 - Overcome challenges in experiments
 - Parametric study of geometric dimensions
 - Complicated EWOD fabrication
- Easy approximate temperature measurement
- Parametric study for optimum heat transfer performance

Model Description

Numerical Formulations

• Governing equations:

- Incompressible, constant properties flow
- Navier-stokes equations:

$$\nabla \cdot \boldsymbol{u} = 0$$
 shear and air drag actuating force
$$\rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) + \nabla p - \mu \nabla^2 \boldsymbol{u} = F_{\text{st}}$$

$$\mathbf{F}_{st} = \sigma k \delta(\phi) \nabla \phi$$

k=curvature of the interface σ =surface tension.

 δ =Dirac delta function (only non-zero at the interface

Φ=Phase field variable

• Energy equation:

$$\rho \text{Cp.}\mathbf{u}.\nabla T + \rho \text{Cp.}\partial T/\partial t = \nabla.(K\nabla T)$$

C_p=Specific heat capacity ρ=Density K=Thermal conductivity

- Use of Two-phase flow, Level Set and Two-phase flow, Phase field interface for interface tracking
- Advection equation for interface tracking:

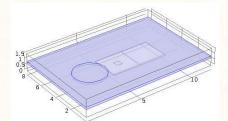
$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = \nabla \cdot \frac{\mathbf{Y} \lambda}{\epsilon^2} \nabla \psi$$
(For phase-field method)

 γ is the mobility (m3·s/kg), λ is the mixing energy density (N) and ϵ (m) is the interface thickness parameter and ψ is referred to as the phase field help variable

- Use of Heat Transfer in Fluids interface and coupled to two-phase flow interface
- Material Properties:

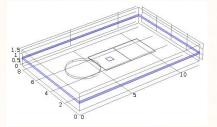
K=(K water-K air)×
$$\varphi$$
 water+K air
C p=(C water-C air)× φ water+C air
 ρ =(ρ water- ρ air)× φ water+ ρ air

K=Thermal conductivity $C_p = Specific heat capacity$ $\rho = Density$

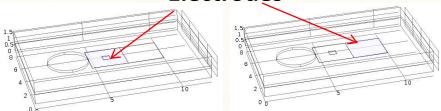

Boundary Conditions

Fluid flow

Fluid domain



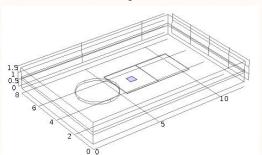
Top and bottom surface

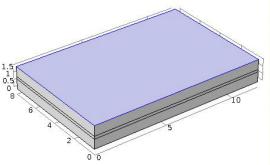

Defined contact angle corresponding to zero voltage (Wetted wall or Navier slip condition

Side walls

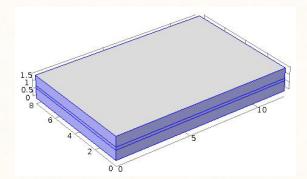
No slip condition

Electrodes


• Defined contact angle corresponding to voltage V(t) (From Young-Lippmann equation) (Wetted wall or Navier slip condition)


Boundary Conditions

Hotspot


Heat Transfer

Top surface

Constant heat flux (Boundary heat source)

Other boundaries

Insulated

Convection to air

Geometrical dimensions

Parameter name	Dimension (mm)
Electrode dimension	2×2
Channel height	0.1
Hotspot dimension	0.5×0.5
Top & bottom plate thickness	0.7

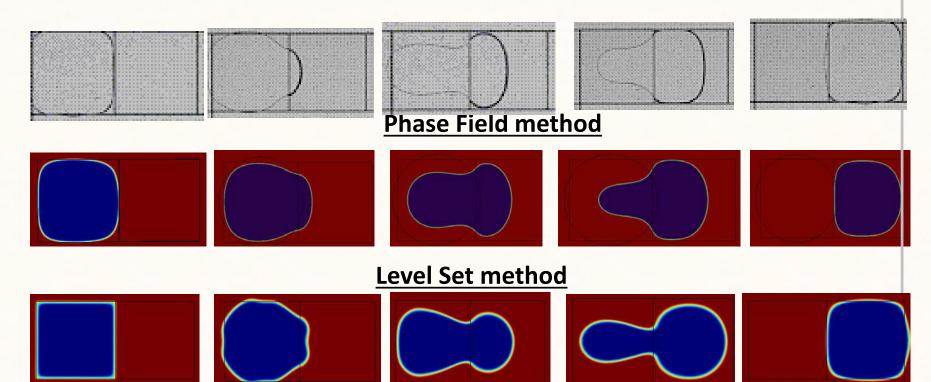
Simulation Parameters

Name	Value
Surface tension, σ	.072 [N/m]
Applied voltage, V _{ac}	150[V]
Initial contact angle, θ_o	118[degree]
Dielectric thickness, d	5[μm]
Heat Flux, q"	36.6[W/cm ²]
Dielectric constant, ε_r	2.5
Convection co-efficient, h _{air}	5[W/(m.K)]
Initial temperature, T	298.15 [K]

Results

Droplet profiles

At t=0 ms


At t=20 ms

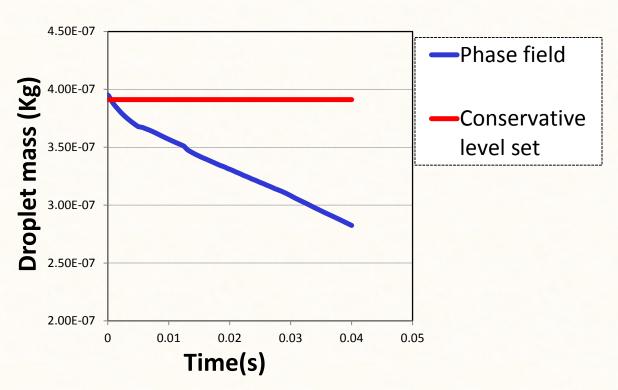
At t=40 ms

At t=60 ms

At t=100 ms

Experiment

• Phase field method gives more accurate and smooth profile


10/20/2015

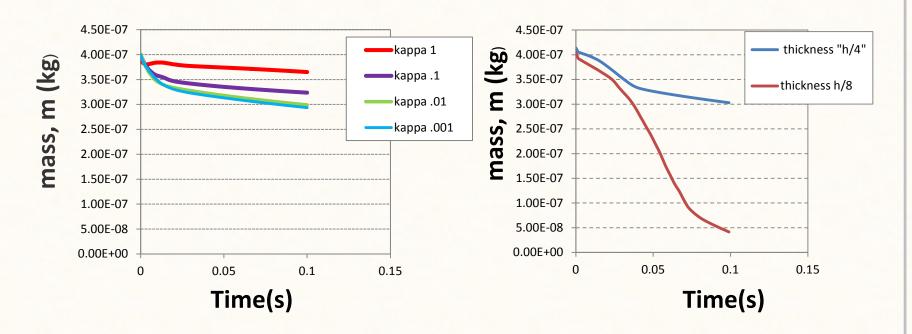
Results

COMSOL CONFERENCE 2015 BOSTON

Mass conservation issues

- •Phase field: 30% mass loss after 40 ms
- •Conservative level set:
 Guarantees mass
 conservation

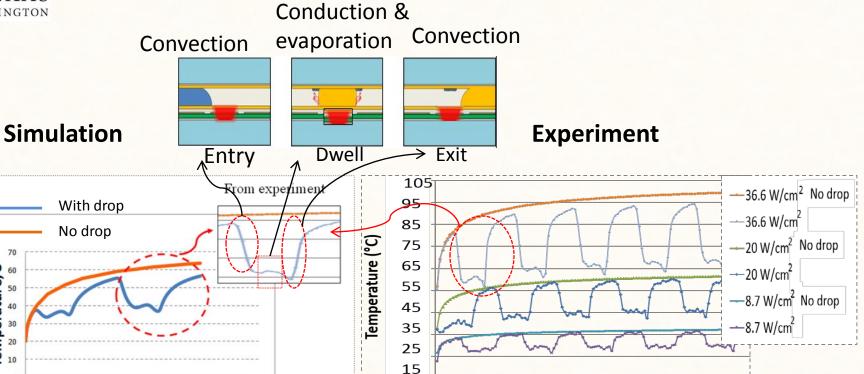
- Mass conservation is affected by numerical tuning parameters such as:
 - Mobility tuning parameter
 - Interface thickness
 - Tuning parameter


Results

Parametric study for phase field method

Mobility tuning parameter, χ

Interface thickness, ε


- Mass loss increases with decrease in value of mobility tuning parameter
- Mass loss increases with decrease in interface thickness

Results Cooling curve of the hotspot

COMSOL CONFERENCE 2015 BOSTON

Time (s)

Average surface temperature of hotspot

• Temperature drop from simulation: 18 °C

Temperature drop in experiment: 20 °C

0.05

0.1

Time, s

0.15

Temperature,

Conclusions

- 3-Dimensional EWOD droplet motion has been successfully modelled using two methods of interface tracking of two-phase.
 - Two Issues:
 - Mass loss
 - Slight inaccuracy in results due to negligence of hysteresis angle, contact line friction and evaporation heat transfer
- Droplet motion results have been validated with the experiment
- Numerical modeling of cooling of a hotspot has been demonstrated by solving multiphysics problem
- Future study includes modeling heat transfer enhancement due to evaporation by an EWOD actuated droplet

References

- 1. Shamai, Romi, et al. "Water, electricity, and between... On electrowetting and its applications." *Soft Matter* 4.1 (2008): 38-45.
- 2. A numerical study of microfluidic droplet motions in parallel-plate electrowetting-on-dielectric (EWOD) devices by *Guan, Yin, Ph.D., THE UNIVERSITY OF TEXAS AT ARLINGTON, 2015, 170 pages; 3709722.*
- 3. Chae, Jeong Byung, et al. "3D Electrowetting-on-dielectric Actuation." *Sensors and Actuators A: Physical* (2015).
- 4. Shen, Hsien-Hua, et al. "EWOD microfluidic systems for biomedical applications." *Microfluidics and Nanofluidics* 16.5 (2014): 965-987.
- 5. Olsson, Elin, and Gunilla Kreiss. "A conservative level set method for two phase flow." *Journal of computational physics* 210.1 (2005): 225-246.
- 6. Mohseni, K., and E. S. Baird. "Digitized heat transfer using electrowetting on dielectric." *Nanoscale and Microscale Thermophysical Engineering* 11.1-2 (2007): 99-108.
- 7. Paik, Philip Y., Vamsee K. Pamula, and Krishnendu Chakrabarty. "Adaptive cooling of integrated circuits using digital microfluidics." *Very Large Scale Integration (VLSI) Systems, IEEE Transactions on* 16.4 (2008): 432-443.
- 8. Pollack, Michael G., Richard B. Fair, and Alexander D. Shenderov. "Electrowetting-based actuation of liquid droplets for microfluidic applications." *Applied Physics Letters* 77.11 (2000): 1725-1726.

Acknowledgements

- DARPA
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, for travel grant.