Designing the Actuator for the Next-Generation Astronomical Deformable Mirrors: a Multidisciplinary and Multiphysics Approach

Comsol for Adaptive Optics

C. Del Vecchio1 R. Biasi2 A. Riccardi1 D. Gallieni3

1INAF-OAA Florence, Italy
2Microgate SrL Bolzano, Italy
3ADS International SrL Valmadrera (LC), Italy

2008 Comsol Conference Hannover, Nov 5 2008
1. Background
 - The AO Principle
 - The Design Drivers
2. The Actuator
 - The Multiphysics Problem
 - The Model
3. The Application Modes
 - Magnetostatics
 - Heat transfer
 - Fluid dynamics
4. Results
5. Experimental Validation
Compensating the Atmospheric Turbulence
The Control System Concept
Adaptive Optics on board the Telescope

System Overview

Riccardi et al., 2004
Actuating the DM & Sensing the Displacements
The LBT Voice-Coil
Outline

1. Background
 - The AO Principle
 - The Design Drivers

2. The Actuator
 - The Multiphysics Problem
 - The Model

3. The Application Modes
 - Magnetostatics
 - Heat transfer
 - Fluid dynamics

4. Results

5. Experimental Validation
Basic Requirements of High Order DM’s
The Specs are very Severe

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms force (turb. corr.) [N]</td>
<td>0.363</td>
</tr>
<tr>
<td>max force (static) [N]</td>
<td>0.36</td>
</tr>
<tr>
<td>max force (dynamic) [N]</td>
<td>1.27</td>
</tr>
<tr>
<td>stroke [μm]</td>
<td>±150</td>
</tr>
<tr>
<td>bandwidth [kHz]</td>
<td>1</td>
</tr>
<tr>
<td>typical actuator spacing [mm]</td>
<td>25</td>
</tr>
<tr>
<td>typical mover mass [g]</td>
<td>≤ 10</td>
</tr>
<tr>
<td>resistance [Ω]</td>
<td>2 to 2.5</td>
</tr>
<tr>
<td>measuring range [μm]</td>
<td>±100</td>
</tr>
<tr>
<td>resolution [nm]</td>
<td>< 3</td>
</tr>
<tr>
<td>rms noise [nm]</td>
<td>< 5</td>
</tr>
<tr>
<td>drift(^1) [nm]</td>
<td>20</td>
</tr>
<tr>
<td>bandwidth [kHz]</td>
<td>> 30</td>
</tr>
</tbody>
</table>

\(^1\) 12 hrs base, 5°C temperature variation
DM Stiffness vs. DM Thickness & Act Spacing

\[K_{\text{flex}} \propto t^3 \times (1/d)^4 \]

- What if
 - the inter-actuator spacing is slightly reduced
 - the thickness is slightly increased

\[
\begin{align*}
\text{HIGHER ORDER DM} & \quad d = 30 \rightarrow 25 \text{ mm} \ (16\%) \\
\text{ELT PANELS} & \quad t = 1.6 \rightarrow 2 \text{ mm} \ (20\%) \\
\end{align*}
\]

\[\sim 2 \times K_{\text{flex}} \]
The Design Criterion: Avoid Thermal Pollution
The Basic Question & Two Possible Answers

reduce the *local seeing*

↓

reduce any local heating

↓

given the force, reduce the power

↓

maximize the efficiency, i.e. the force-to-power ratio
(while respecting the geometry and minimizing the emc)

How getting $\Delta T \leq \pm 1 \text{ K}$ on any air-exposed surface?

1. implement a cooling system
 - *active* (which $T_{\text{co}l\text{a}nt}$?)

2. rely on the natural convection
 - *passive*

SAFER BUT MORE COMPLEX

SIMPLER BUT MORE RISKY
The Design Criterion: Avoid Thermal Pollution
The Basic Question & Two Possible Answers

reduce the local seeing
↓
reduce any local heating
↓
given the force, reduce the power
↓
maximize the efficiency, i.e. the force-to-power ratio
(while respecting the geometry and minimizing the emc)

How getting $\Delta T \leq \pm 1 \text{ K}$ on any air-exposed surface?

1. implement a cooling system
 - active (which T_{coolant} ?)
 SAFER BUT MORE COMPLEX

2. rely on the natural convection
 - passive
 SIMPLER BUT MORE RISKY
The Design Criterion: Avoid Thermal Pollution
The Basic Question & Two Possible Answers

reduce the *local seeing*
\[\downarrow \]
reduce any local heating
\[\downarrow \]
given the force, reduce the power
\[\downarrow \]
maximize the efficiency, i.e. the force-to-power ratio (while respecting the geometry and minimizing the emc)

How getting $\Delta T \leq \pm 1$ K on any air-exposed surface?

1. implement a cooling system
 - *active* (which T_{coolant}?)

2. rely on the natural convection
 - *passive*

SAFER BUT MORE COMPLEX

SIMPLER BUT MORE RISKY
The Design Criterion: Avoid Thermal Pollution

The Basic Question & Two Possible Answers

reduce the *local seeing*

\[\downarrow \]

reduce any local heating

\[\downarrow \]

given the force, reduce the power

\[\downarrow \]

maximize the efficiency, i.e. the force-to-power ratio (while respecting the geometry and minimizing the emc)

How getting $\Delta T \leq \pm 1$ K on any air-exposed surface?

1. implement a cooling system
 active (which T_{coolant}?)

 SAFER BUT MORE COMPLEX

2. rely on the natural convection
 passive

 SIMPLER BUT MORE RISKY
The Design Criterion: Avoid Thermal Pollution
The Basic Question & Two Possible Answers

reduce the *local seeing*
\[\downarrow \]
reduce any local heating
\[\downarrow \]
given the force, reduce the power
\[\downarrow \]
maximize the efficiency, i.e. the force-to-power ratio
(while respecting the geometry and minimizing the emc)

How getting $\Delta T \leq \pm 1$ K on any air-exposed surface?

1. implement a cooling system
 - *active* (which T_{cooler}?)
 SAFER BUT MORE COMPLEX

2. rely on the natural convection
 - *passive*
 SIMPLER BUT MORE RISKY

Results
Experimental Validation
Summary
The Design Criterion: Avoid Thermal Pollution
The Basic Question & Two Possible Answers

reduce the *local seeing*

↓

reduce any local heating

↓

given the force, reduce the power

↓

maximize the efficiency, i.e. the force-to-power ratio
(while respecting the geometry and minimizing the emc)

How getting $\Delta T \leq \pm 1$ K on any air-exposed surface?

1. implement a cooling system
 - *active* (which $T_{\text{coo}lant}$?)

2. rely on the natural convection
 - *passive*

SAFER BUT MORE COMPLEX

SIMPLER BUT MORE RISKY
The Design Criterion: Avoid Thermal Pollution
The Basic Question & Two Possible Answers

reduce the *local seeing*

⇓

reduce any local heating

⇓

given the force, reduce the power

⇓

maximize the efficiency, i.e. the force-to-power ratio
(while respecting the geometry and minimizing the emc)

1. How getting $\Delta T \leq \pm 1$ K on any air-exposed surface?
 1. implement a cooling system
 2. *active* (which T_{coolant}?)

2. rely on the natural convection
 2. *passive*

SAFER BUT MORE COMPLEX

SIMPLER BUT MORE RISKY
The Design Criterion: Avoid Thermal Pollution
The Basic Question & Two Possible Answers

reduce the *local seeing*

⇓

reduce any local heating

⇓

given the force, reduce the power

⇓

maximize the efficiency, i.e. the force-to-power ratio (while respecting the geometry and minimizing the emc)

How getting $\Delta T \leq \pm 1$ K on any air-exposed surface?

1. implement a cooling system
 - *active* (which T_{coolant}?)

2. rely on the natural convection
 - *passive*

SAFER BUT MORE COMPLEX

SIMPLER BUT MORE RISKY
The Design Criterion: Avoid Thermal Pollution
The Basic Question & Two Possible Answers

reduce the *local seeing*

\[\downarrow \]

reduce any local heating

\[\downarrow \]

given the force, reduce the power

\[\downarrow \]

maximize the efficiency, i.e. the force-to-power ratio (while respecting the geometry and minimizing the emc)

- How getting \(\Delta T \leq \pm 1 \text{ K} \) on any air-exposed surface?
 1. implement a cooling system
 - *active* (which \(T_{\text{coolant}} \)?)
 2. rely on the natural convection
 - *passive*
The Design Criterion: Avoid Thermal Pollution
The Basic Question & Two Possible Answers

- reduce the local seeing
 - reduce any local heating
 - given the force, reduce the power
 - maximize the efficiency, i.e. the force-to-power ratio (while respecting the geometry and minimizing the emc)

How getting $\Delta T \leq \pm 1$ K on any air-exposed surface?

1. implement a cooling system
 - active (which T_{coolant}?)

2. rely on the natural convection
 - passive

 SAFER BUT MORE COMPLEX
 SIMPLER BUT MORE RISKY
The Design Criterion: Avoid Thermal Pollution
The Basic Question & Two Possible Answers

reduce the *local seeing*

\[\Downarrow \]

reduce any local heating

\[\Downarrow \]

given the force, reduce the power

\[\Downarrow \]

maximize the efficiency, i.e. the force-to-power ratio (while respecting the geometry and minimizing the emc)

How getting $\Delta T \leq \pm 1 \text{ K}$ on any air-exposed surface?

1. implement a cooling system
 - *active* (which T_{coolant}?)

2. rely on the natural convection
 - *passive*
The Design Criterion: Avoid Thermal Pollution

The Basic Question & Two Possible Answers

reduce the local seeing
↓
reduce any local heating
↓
given the force, reduce the power
↓
maximize the efficiency, i.e. the force-to-power ratio
(while respecting the geometry and minimizing the emc)

How getting $\Delta T \leq \pm 1 \text{ K}$ on any air-exposed surface?

1. implement a cooling system
 - active (which T_{coolant}?)
 - SAFER BUT MORE COMPLEX

2. rely on the natural convection
 - passive
 - SIMPLER BUT MORE RISKY
The Design Criterion: Avoid Thermal Pollution
The Basic Question & Two Possible Answers

reduce the *local seeing*

\[\downarrow \]

reduce any local heating

\[\downarrow \]

given the force, reduce the power

\[\downarrow \]

maximize the efficiency, i.e. the force-to-power ratio
(while respecting the geometry and minimizing the emc)

How getting $\Delta T \leq \pm 1$ K on any air-exposed surface?

1. implement a cooling system
 - *active* (which T_{coolant}?)

2. rely on the natural convection
 - *passive*

SAFER BUT MORE COMPLEX

SIMPLER BUT MORE RISks
The Design Criterion: Avoid Thermal Pollution
The Basic Question & Two Possible Answers

reduce the *local seeing*

\[\downarrow \]

reduce any local heating

\[\downarrow \]

given the force, reduce the power

\[\downarrow \]

maximize the efficiency, i.e. the force-to-power ratio (while respecting the geometry and minimizing the emc)

How getting $\Delta T \leq \pm 1$ K on any air-exposed surface?

1. implement a cooling system
 - *active* (which T_{coitant}?)

2. rely on the natural convection
 - *passive*

SAFER BUT MORE COMPLEX

SIMPLER BUT MORE RISKY
The Electromagnetic Core
Variable Reluctance LM: Magnetic Force = \(\int_V (\mathbf{M} \cdot \nabla) \mathbf{B} \, dV \)

[Del Vecchio et al., 2008]
The Electromagnetic Core

Variable Reluctance LM: Magnetic Force = \int_V (M \cdot \nabla) B \, dV

[Del Vecchio et al., 2008]
The Electromagnetic Core

Variable Reluctance LM: Magnetic Force = \(\int_V (\mathbf{M} \cdot \nabla) \mathbf{B} \, dV \)

[Del Vecchio et al., 2008]
Outline

1. Background
 - The AO Principle
 - The Design Drivers

2. The Actuator
 - The Multiphysics Problem
 - The Model

3. The Application Modes
 - Magnetostatics
 - Heat transfer
 - Fluid dynamics

4. Results

5. Experimental Validation
The Axially Symmetric Actuator
E/M and E/S Components

motor (statoric)
capsens (statoric)
motor (moving) & shaft
capsens (moving)
The Axially Symmetric Actuator
E/M and E/S Components

The Axially Symmetric Actuator
E/M and E/S Components

motor (statoric)
capsens (statoric)
motor (moving) & shaft
capsens (moving)
The Axially Symmetric Actuator
E/M and E/S Components

motor (statoric)
capsens (statoric)
motor (moving) & shaft
capsens (moving)
The Axially Symmetric Actuator
E/M and E/S Components

Novel AO Act
Del Vecchio, Biasi, Riccardi, Gallieni

Background
The AO Principle
The Design Drivers

The Actuator
The Multiphysics Problem
The Model

The Application Modes
Magnetostatics
Heat transfer
Fluid dynamics

Results
Experimental Validation

Summary

motor (statoric)
capsens (statoric)
motor (moving) & shaft
capsens (moving)
The Axially Symmetric Actuator

The Other Components

static
motor capsens

moving
motor shaft capsens
membranes
top/bottom plates
body (& aux)
From the Dwg to the Mesh
Carefully Meshing Gap & Coil Regions

- 2d geometry imported via the CAD Import Module
- Fine mesh of coil \(r_{wire} = 0.1195 \text{ mm}, \delta_{ins} = 7 \mu\text{m} \) and air gaps \(\tau = 7 \mu\text{m} \)
- As a result
 - \(\approx 55,000 \) points and \(\approx 100,000 \) elements
 - 0.5% of which have a quality \(\leq 0.4 \)
 - minimum quality = 0.19
From the Dwg to the Mesh
Carefully Meshing Gap & Coil Regions

- **2d geometry imported via the CAD Import Module**
- **Fine mesh of coil** \(r_{wire} = 0.1195 \text{ mm}, \delta_{ins} = 7 \mu\text{m} \) and air gaps \(\tau = 7 \mu\text{m} \)
- **As a result**
 - \(\approx 55,000 \) points and \(\approx 100,000 \) elements
 - .5% of which have a quality \(\leq .4 \)
 - minimum quality = .19
From the Dwg to the Mesh
Carefully Meshing Gap & Coil Regions

- 2d geometry imported via the CAD Import Module
- Fine mesh of coil \(r_{\text{wire}} = .1195 \text{ mm}, \delta_{\text{ins}} = 7 \mu\text{m} \) and air gaps \(\tau = 7 \mu\text{m} \)
- As a result
 - \(\approx 55,000 \) points and \(\approx 100,000 \) elements
 - .5% of which have a quality \(\leq .4 \)
 - minimum quality = .19
From the Dwg to the Mesh
Carefully Meshing Gap & Coil Regions

- 2d geometry imported via the CAD Import Module
- Fine mesh of coil \(r_{\text{wire}} = 0.1195 \text{ mm}, \delta_{\text{ins}} = 7 \mu\text{m} \) and air gaps \(\tau = 7 \mu\text{m} \)
- As a result
 - \(\approx 55,000 \) points and \(\approx 100,000 \) elements
 - .5% of which have a quality \(\leq .4 \)
 - minimum quality = .19
From the Dwg to the Mesh
Carefully Meshing Gap & Coil Regions

- 2d geometry imported via the CAD Import Module
- Fine mesh of coil \((r_{wire} = .1195\, \text{mm}, \delta_{ins} = 7\, \mu\text{m})\) and air gaps \((\tau = 7\, \mu\text{m})\)
- As a result
 - \(\approx 55,000\) points and \(\approx 100,000\) elements
 - .5% of which have a quality \(\leq .4\)
 - minimum quality = .19
Outline

1. Background
 - The AO Principle
 - The Design Drivers

2. The Actuator
 - The Multiphysics Problem
 - The Model

3. The Application Modes
 - Magnetostatics
 - Heat transfer
 - Fluid dynamics

4. Results

5. Experimental Validation
Setting Up the Magnetostatics

Temperature Affects the Resistive Heating

\[F = \int_S -\frac{1}{2} (\mathbf{H} \cdot \mathbf{B}) \mathbf{n} + (\mathbf{n} \cdot \mathbf{H}) \mathbf{B}^T \, dS = \int_V (\mathbf{M} \cdot \nabla) \mathbf{B} \, dV \]

choose the Maxwell tensor

\[\sigma_{Cu} = \frac{1}{\rho_{Cu_{ref}}} \left[1 + 0.0039 (T - 293) \right] \quad \text{S} \times \text{m}^{-1} \]

\[\rho_{Cu_{ref}} = 1.72 \times 10^{-8} \, \Omega \times \text{m} \quad \text{Cu resistivity @ 293 K} \]

\[T \leftarrow \text{heat transfer} \]
Setting Up the Heat Transfer
Assumption & Restrictions

- neglect the radiative contribution
- $\frac{\partial k}{\partial T} \approx 0$ in conductive solids
- trapped air isn’t convective
- convective air
 - $\rho = \frac{M}{R} \frac{p + p_{atm}}{T} = 3.484 \times 10^{-3} \frac{p}{T}$ [Pa] \(\leftarrow pV = nRT
 - $p \leftarrow$ weakly compressible Navier-Stokes
 - $p_{atm} = 101325$ Pa
 - $u_{air} \leftarrow$ weakly compressible Navier-Stokes
- boundary conditions
 - $T = T_{ref}$ @ bottom
 - thermal insulation @ vertical outer bnd
 - convective flux @ top
 - $T = T_{coolant}$ @ coolant channels bnd’s (if any)
Outline

1. Background
 - The AO Principle
 - The Design Drivers

2. The Actuator
 - The Multiphysics Problem
 - The Model

3. The Application Modes
 - Magnetostatics
 - Heat transfer
 - Fluid dynamics

4. Results

5. Experimental Validation
Setting Up the Weakly Compressible N-S Assumption & Restrictions

\[\rho = \frac{M p + p_{atm}}{T} = 3.484 \times 10^{-3} \frac{p}{T} \quad [\text{kg} \times \text{m}^{-3}] \quad \leftrightarrow \quad pV = nRT \]

\[\eta = -7.887 \times 10^{-12} T^2 + 4.427 \times 10^{-8} T + 5.204 \times 10^{-6} \quad [\text{Pa} \times \text{s}^{-1}] \]

\[f_z = 9.81 (\rho_{ref} - \rho_{chns}) \quad [\text{N}] \]

\[\rho_{ref} = \rho @ (T = T_{ref}, p = 0) \]

boundary conditions

\[u = 0 \quad \text{(wall / no slip)} \quad @ \text{air-solid interfaces} \]
\[n \cdot u = 0 \ldots \quad \text{(wall / slip)} \quad @ \text{vertical outer bnd} \]
\[p = 0 \ldots \quad \text{(outlet / normal stress)} \quad @ \text{horizontal top bnd} \]
Magnetostatic Results I
\[\epsilon > 4 N \times W^{-1} \]

- \[.57 \leq \Delta T_{Cu} \leq 3.98 \text{ K}, \text{ thanks to material optimization} \]
- \[4.05 \leq \epsilon \leq 4.1 N \times W^{-1}, \text{ thanks to geom. optimization} \]

1. rms turb. corr. force \[.363 \text{ N} \rightarrow .21 \text{ A} \]
2. max dyn. force \[1.27 \text{ N} \rightarrow .38 \text{ A} \]

A low-order actuator vs. the current high order actuator

<table>
<thead>
<tr>
<th>Force</th>
<th>LBT</th>
<th>TEC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\int_V (J \times B) , dV)</td>
<td>(\int_V (M \cdot \nabla) B , dV)</td>
<td></td>
</tr>
<tr>
<td>power @ 1.27 N [W]</td>
<td>4.169</td>
<td>.314</td>
</tr>
<tr>
<td>power @ 0.25 N [W]</td>
<td>.162</td>
<td>.062</td>
</tr>
<tr>
<td>mov. mass [kg(\times 10^{-3})]</td>
<td>2.8</td>
<td>14</td>
</tr>
<tr>
<td>emc</td>
<td>mean</td>
<td>negligible</td>
</tr>
</tbody>
</table>
Magnetostatic Results II
Shaping the Ferromagnetic Material to Focus B
2 force cases
- rms turb. corr. force \(f_c = 0.363 \text{ N} \)
- max dyn. force \(f_m = 1.27 \text{ N} \)

active
- \(\Delta T_{coolant} = 0 \) gives the lowest \(\Delta T \)

<table>
<thead>
<tr>
<th>force</th>
<th>max surface (\Delta T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_c)</td>
<td>0.10 K</td>
</tr>
<tr>
<td>(f_m)</td>
<td>0.35 K</td>
</tr>
</tbody>
</table>

passive
- The (rare) \(f = f_m \) gives out-of-specs \(\Delta T \)

<table>
<thead>
<tr>
<th>force</th>
<th>max surface (\Delta T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_c)</td>
<td>0.64 K</td>
</tr>
<tr>
<td>(f_m)</td>
<td>2.24 K</td>
</tr>
</tbody>
</table>
Fluid Dynamics Results II

The Active Surface ΔT

![Image of fluid dynamics results](image-url)
Fluid Dynamics Results III
The Passive Surface ΔT
Fluid Dynamics Results IV

\(f = f_m \): the Active and Passive Air Velocities
Running the preliminary tests

- The mechanics is OK
- $\epsilon \approx \frac{1}{2}$ of the design value (maybe a bad coil filling factor and stator part mismatching)
Lessons Learned & Future Work

$\epsilon_{\text{Iron+Copper}} > \epsilon_{\text{PM+Copper}}$

- but (Cons)
 - larger moving mass
 - mechanical contact
 - much larger statoric mass

- and (Pros)
 - low flux leakage
 - heat removal by natural convection

On the way & Still to do

- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S

Δm dynamics may degrade
tighter tolerances
just higher costs
negligible emc
simpler design
Lessons Learned & Future Work

- $\varepsilon_{\text{Iron+Copper}} > \varepsilon_{\text{PM+Copper}}$
 - but (Cons)
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - and (Pros)
 - low flux leakage
 - heat removal by natural convection

On the way & Still to do
- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S
- better bnd conditions @ bottom
- add \dot{Q} from electronics boards
- actuator interaction

Background
- The AO Principle
- The Design Drivers

The Actuator
- The Multiphysics Problem
- The Model

The Application Modes
- Magnetostatics
- Heat transfer
- Fluid dynamics

Results
- Experimental Validation

Summary
Lessons Learned & Future Work

\[\varepsilon_{\text{Iron+Copper}} > \varepsilon_{\text{PM+Copper}} \]

- but (Cons)
 - larger moving mass
 - mechanical contact
 - much larger statoric mass

- and (Pros)
 - low flux leakage
 - heat removal by natural convection
 - DM dynamics may degrade
tightener tolerances
just higher costs
negligible emc
simpler design

On the way & Still to do

- 2d SM
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S

better bnd conditions @ bottom
add \(\dot{Q} \) from electronics boards
actuator interaction
Lessons Learned & Future Work

- $\epsilon_{\text{Iron+Copper}} > \epsilon_{\text{PM+Copper}}$
- but (Cons)
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
- and (Pros)
 - low flux leakage
 - heat removal by natural convection

DM dynamics may degrade
- DM dynamics may degrade
- tighter tolerances
- just higher costs
- negligible emc
- simpler design

On the way & Still to do
- 2d SM
 - 2d Multiphysics
 - 3d Multiphysics
 - 3d E/M & E/S
 - 3d E/M & E/S
 - better bnd conditions @ bottom
 - add Q from electronics boards
 - add Q from electronics boards
 - actuator interaction
Lessons Learned & Future Work

\[\epsilon_{\text{Iron} + \text{Copper}} > \epsilon_{\text{PM} + \text{Copper}} \]

- **but (Cons)**
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - DM dynamics may degrade
 - tighter tolerances
 - just higher costs
 - negligible emc
 - simpler design

- **and (Pros)**
 - low flux leakage
 - heat removal by natural convection

On the way & Still to do

- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S

better bnd conditions @ bottom
add \(\dot{Q} \) from electronics boards
actuator interaction

2d SM thermal deformations
2d Multiphysics better bnd conditions @ bottom
add \(\dot{Q} \) from electronics boards
actuator interaction

3d Multiphysics
3d E/M & E/S

- Magnetostatics
- Heat transfer
- Fluid dynamics
Lessons Learned & Future Work

- $\epsilon_{\text{Iron}+\text{Copper}} > \epsilon_{\text{PM}+\text{Copper}}$
 - **but (Cons)**
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - DM dynamics may degrade
even tighter tolerances
 - just higher costs
 - negligible emc
 - heat removal by natural convection
 - simpler design
- **and (Pros)**
 - low flux leakage
 - heat removal by natural convection

On the way & Still to do
- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S
- better bnd conditions @ bottom
- add \dot{Q} from electronics boards
- actuator interaction
- 2d SM thermal deformations
- 2d Multiphysics
- better bnd conditions @ bottom
- add \dot{Q} from electronics boards
- actuator interaction

Results
- Experimental Validation

Summary
- Novel AO Act
 - Del Vecchio,
 - Biasi,
 - Riccardi,
 - Gallieni

Background
- The AO Principle
- The Design Drivers

The Actuator
- The Multiphysics Problem
- The Model
Lessons Learned & Future Work

\[\epsilon_{\text{Iron} + \text{Copper}} > \epsilon_{\text{PM} + \text{Copper}} \]

- **Cons**
 - larger moving mass
 - mechanical contact
 - much larger statoric mass

- **Pros**
 - low flux leakage
 - heat removal by natural convection

- DM dynamics may degrade
 - tighter tolerances
 - just higher costs
 - negligible emc
 - simpler design

On the way & Still to do

- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S

better bnd conditions @ bottom
add \(\dot{Q} \) from electronics boards
actuator interaction
Lessons Learned & Future Work

\[\varepsilon_{\text{Iron} + \text{Copper}} > \varepsilon_{\text{PM} + \text{Copper}} \]

- but (Cons)
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - DM dynamics may degrade
 - tighter tolerances
 - just higher costs

- and (Pros)
 - low flux leakage
 - negligible emc
 - heat removal by natural convection
 - simpler design

On the way & Still to do

- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S
- 3d E/M & E/S

better bnd conditions @ bottom
add \(\dot{Q} \) from electronics boards
actuator interaction
Lessons Learned & Future Work

- $\varepsilon_{\text{Iron+Copper}} > \varepsilon_{\text{PM+Copper}}$
- but (Cons)
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
- and (Pros)
 - low flux leakage
 - heat removal by natural convection

DM dynamics may degrade tighter tolerances just higher costs

On the way & Still to do
- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S

better bnd conditions @ bottom
add \dot{Q} from electronics boards
actuator interaction
Lessons Learned & Future Work

\[\varepsilon_{\text{Iron+Copper}} > \varepsilon_{\text{PM+Copper}} \]

- **(Cons)**
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - DM dynamics may degrade mechanical contact
 - tighter tolerances
 - just higher costs

- **(Pros)**
 - low flux leakage
 - negligible emc
 - heat removal by natural convection
 - simpler design

On the way & Still to do

- 2d SM
- Magnetostatics
- Heat transfer
- Fluid dynamics
- 2d Multiphysics
- 2d Multiphysics
- 2d Multiphysics
- better bnd conditions @ bottom
- add \(\dot{Q} \) from electronics boards
- 3d Multiphysics
- 3d Multiphysics
- actuator interaction
- 3d E/M & E/S
- 3d E/M & E/S
Lessons Learned & Future Work

- \(\epsilon_{\text{Iron+Copper}} > \epsilon_{PM+Copper} \)
- **but (Cons)**
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - DM dynamics may degrade
tighter tolerances
just higher costs

- **and (Pros)**
 - low flux leakage
 - negligible emc
 - heat removal by natural convection
 - simpler design

On the way & Still to do

- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S

- better bnd conditions @ bottom
- add \(\dot{Q} \) from electronics boards
- actuator interaction
- 3d E/M & E/S
Lessons Learned & Future Work

\[\varepsilon_{\text{Iron} + \text{Copper}} > \varepsilon_{\text{PM} + \text{Copper}} \]

- **but (Cons)**
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - DM dynamics may degrade
 - tighter tolerances
 - just higher costs

- **and (Pros)**
 - low flux leakage
 - negligible emc
 - heat removal by natural convection
 - simplier design

On the way & Still to do

- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S

Better bnd conditions @ bottom

Actuator interaction

Add Q from electronics boards
Lessons Learned & Future Work

- \(\epsilon_{\text{Iron}+\text{Copper}} > \epsilon_{\text{PM}+\text{Copper}} \)
 - but (Cons)
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - and (Pros)
 - low flux leakage
 - heat removal by natural convection
 - DM dynamics may degrade
 - tighter tolerances
 - just higher costs
 - negligible emc
 - simpler design

On the way & Still to do
- 2d SM
- 2d Multiphysics
- 2d Multiphysics
 - better bnd conditions @ bottom
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S
 - add \(\dot{Q} \) from electronics boards
 - actuator interaction
 - run-out & tilt
Lessons Learned & Future Work

\[\epsilon_{\text{Iron+Copper}} > \epsilon_{\text{PM+Copper}} \ldots \]

- but (Cons)
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - DM dynamics may degrade
tightener tolerances
just higher costs

- and (Pros)
 - low flux leakage
 - negligible emc
 - heat removal by natural convection
 - simpler design

On the way & Still to do

- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S

- thermal deformations
- better bnd conditions @ bottom
- add \(Q \) from electronics boards
- actuator interaction

-Iron + Copper > PM + Copper

- Lessons Learned & Future Work

- \(\epsilon \) Iron + Copper > PM + Copper

- but (Cons)
- larger moving mass
- mechanical contact
- much larger statoric mass

- and (Pros)
- low flux leakage
- negligible emc
- heat removal by natural convection

On the way & Still to do

- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S

- thermal deformations
- better bnd conditions @ bottom
- add \(Q \) from electronics boards
- actuator interaction

- Lessons Learned & Future Work

- \(\epsilon \) Iron + Copper > PM + Copper

- but (Cons)
- larger moving mass
- mechanical contact
- much larger statoric mass

- and (Pros)
- low flux leakage
- negligible emc
- heat removal by natural convection

On the way & Still to do

- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S

- thermal deformations
- better bnd conditions @ bottom
- add \(Q \) from electronics boards
- actuator interaction
Lessons Learned & Future Work

- $\varepsilon_{\text{Iron} + \text{Copper}} > \varepsilon_{\text{PM} + \text{Copper}}$
 - but (Cons)
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - DM dynamics may degrade
tightener tolerances
just higher costs
 - and (Pros)
 - low flux leakage
 - negligible emc
 - heat removal by natural convection
 - simpler design

On the way & Still to do

- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S

thermal deformations
better bnd conditions @ bottom
add \dot{Q} from electronics boards
actuator interaction
Novel AO Act

Del Vecchio, Biasi, Riccardi, Gallieni

Background

The AO Principle

The Design Drivers

The Actuator

The Multiphysics

Problem

The Model

Application

Modes

Magnetostatics

Heat transfer

Fluid dynamics

Results

Experimental Validation

Summary

Lessons Learned & Future Work

\[\epsilon_{\text{Iron} + \text{Copper}} > \epsilon_{\text{PM} + \text{Copper}} \]

but (Cons)

- larger moving mass
- mechanical contact
- much larger statoric mass

and (Pros)

- low flux leakage
- heat removal by natural convection

DM dynamics may degrade
tighter tolerances
just higher costs

negligible emc
simpler design

On the way & Still to do

2d SM

2d Multiphysics

2d Multiphysics

3d Multiphysics

3d E/M & E/S

thermal deformations

better bnd conditions @ bottom
add \(\dot{Q} \) from electronics boards
actuator interaction
Lessons Learned & Future Work

- \(\epsilon_{\text{Iron+Copper}} > \epsilon_{\text{PM+Copper}} \) ...
 - but (Cons)
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - and (Pros)
 - low flux leakage
 - heat removal by natural convection
 - DM dynamics may degrade
 - tighter tolerances
 - just higher costs
 - negligible emc
 - simpler design

On the way & Still to do
- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S

thermal deformations
better bnd conditions @ bottom
add \(\dot{Q} \) from electronics boards
actuator interaction

In the current work...
Lessons Learned & Future Work

\[\epsilon_{\text{Iron+Copper}} > \epsilon_{\text{PM+Copper}} \ldots \]

- **but (Cons)**
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - DM dynamics may degrade
 - tighter tolerances
 - just higher costs

- **and (Pros)**
 - low flux leakage
 - negligible emc
 - heat removal by natural convection
 - simpler design

On the way & Still to do

- **2d SM**
- **2d Multiphysics**
- **2d Multiphysics**
- **3d Multiphysics**
- **3d E/M & E/S**

On the way & Still to do

- thermal deformations
- better bnd conditions @ bottom
- add \(\dot{Q} \) from electronics boards
- actuator interaction
Lessons Learned & Future Work

- $\epsilon_{\text{Iron+Copper}} > \epsilon_{\text{PM+Copper}}$...
 - but (Cons)
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - and (Pros)
 - low flux leakage
 - heat removal by natural convection
 - negligible emc
 - simpler design

On the way & Still to do

- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S

- thermal deformations
- better bnd conditions @ bottom
- add \dot{Q} from electronics boards
- actuator interaction
Lessons Learned & Future Work

\[\epsilon_{\text{Iron+Copper}} > \epsilon_{\text{PM+Copper}} \]

- but (Cons)
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - DM dynamics may degrade
tightener tolerances
just higher costs

- and (Pros)
 - low flux leakage
 - negligible emc
 - heat removal by natural convection
 - simpler design

On the way & Still to do

- 2d SM
- thermal deformations
- better bnd conditions @ bottom
- add \(\dot{Q} \) from electronics boards
- 2d Multiphysics
- 3d Multiphysics
- actuator interaction
- 3d E/M & E/S
Lessons Learned & Future Work

\[\epsilon_{\text{Iron+Copper}} > \epsilon_{\text{PM+Copper}} \ldots \]

- **Cons**
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - DM dynamics may degrade
 - tighter tolerances
 - just higher costs

- **Pros**
 - low flux leakage
 - negligible emc
 - heat removal by natural convection
 - simpler design

On the way & Still to do

- **2d SM**
 - thermal deformations
- **2d Multiphysics**
 - better bnd conditions @ bottom
- **2d Multiphysics**
 - add \(\dot{Q} \) from electronics boards
- **3d Multiphysics**
 - actuator interaction
- **3d E/M & E/S**
Lessons Learned & Future Work

\[\epsilon_{\text{Iron}+\text{Copper}} > \epsilon_{\text{PM}+\text{Copper}} \]

- **but (Cons)**
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - DM dynamics may degrade
 - tighter tolerances
 - just higher costs

- **and (Pros)**
 - low flux leakage
 - negligible emc
 - heat removal by natural convection
 - simpler design

- **On the way & Still to do**
 - 2d SM
 - thermal deformations
 - better bnd conditions @ bottom
 - 2d Multiphysics
 - add \(\dot{Q} \) from electronics boards
 - 2d Multiphysics
 - actuator interaction
 - 3d Multiphysics
 - 3d E/M & E/S
 - 3d E/M & E/S

- Lessons Learned & Future Work

Del Vecchio, Biasi, Riccardi, Gallieni

Background
The AO Principle
The Design Drivers
The Actuator
The Multiphysics
Problem
The Model
The Application Modes
Magnetostatics
Heat transfer
Fluid dynamics
Results
Experimental Validation
Summary
Lessons Learned & Future Work

- $\epsilon_{\text{Iron} + \text{Copper}} > \epsilon_{\text{PM} + \text{Copper}}$
 - but (Cons)
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - and (Pros)
 - low flux leakage
 - heat removal by natural convection

On the way & Still to do

- 2d SM
- 2d Multiphysics
- 2d Multiphysics
- 3d Multiphysics
- 3d E/M & E/S

- thermal deformations
- better bnd conditions @ bottom
- add \dot{Q} from electronics boards
- actuator interaction
- tolerances \sim run-out & tilt
Lessons Learned & Future Work

\[\varepsilon_{\text{Iron+Copper}} > \varepsilon_{\text{PM+Copper}} \ldots \]

- **Cons**
 - larger moving mass
 - mechanical contact
 - much larger statoric mass
 - DM dynamics may degrade
tightener tolerances
just higher costs

- **Pros**
 - low flux leakage
 - negligible emc
 - heat removal by natural convection
 - simpler design

On the way & Still to do

- 2d SM
 - thermal deformations
- 2d Multiphysics
 - better bnd conditions @ bottom
- 2d Multiphysics
 - add \(\dot{Q} \) from electronics boards
- 3d Multiphysics
 - actuator interaction
tolerances \(\sim \) run-out & tilt
- 3d E/M & E/S

Background
- The AO Principle
- The Design Drivers

The Actuator
- The Multiphysics Problem
- The Model

The Application Modes
- Magnetostatics
- Heat transfer
- Fluid dynamics

Results
- Experimental Validation

Summary
Del Vecchio, C. Biasi, R. Gallieni, D. Riccardi, A. and Spairani, R.

Actuating the Deformable Mirror: a Multiphysics Design Approach
