Implementation of an Active Fluid Cooling Design in a 48 V High-Power Battery Module

Ziyi Wu1,2, André Stawarski1, Hans Kemper1

1 Energy Storage Systems, FH AACHEN - UNIVERSITY OF APPLIED SCIENCES
2 RWTH Aachen University
Active Fluid Cooling Design in a High Power Battery Module

Contents

- Motivation

- Ground Model
 - Partially Lumped Single Cell Model
 - Battery Module

- Thermal Analysis
 - Ground Model (GM)
 - GM & Active Fluid Cooling (ACF)
 - GM & Internal Cooling Fin (ICF)
 - GM & ICF & & ACF

- Summary
Active Fluid Cooling Design in a High Power Battery Module

Motivation

Technical Data
- SAMSUNG INR18650-33G

<table>
<thead>
<tr>
<th>Cell Chemistry</th>
<th>NCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Capacity</td>
<td>11.4 Wh / 3300 mAh</td>
</tr>
<tr>
<td>Voltage</td>
<td>2.5 V (2.8 V) / 4.2 V</td>
</tr>
<tr>
<td>Standard/Rapid Discharging Current</td>
<td>0.3C / 1C</td>
</tr>
<tr>
<td>Pulse Peak Current</td>
<td>10 A 10 s (Rest 30 s)</td>
</tr>
<tr>
<td>AC Impedance (1kHz)</td>
<td>27 mΩ</td>
</tr>
<tr>
<td>DC Impedance</td>
<td>40 mΩ</td>
</tr>
<tr>
<td>Operating Temperature (Charge / Discharge)</td>
<td>-10 °C ~ 45 °C / -20 °C ~ 60 °C</td>
</tr>
</tbody>
</table>

Ground Model
Partially Lumped Single Cell Model

- Pole

Mandrel

Gap between + pole and active material

Active material

+ Pole
Ground Model
Battery Module
Ground Model
Battery Module
Ground Model
Battery Module

- Busbar
- Cell
- Upper spacer
- Lower spacer
Ground Model
Battery Module
Thermal Analysis
Ground Model

- Software COMSOL Multiphysics®
- Principle: Stationary FEM
- Scope: 3D, transient model
- Coupling of Non-Isothermal Flow:

 \[
 \text{Navier Stokes Equation:} \quad \rho(T)(u \cdot \nabla u) = -\nabla p + \mu(T)\Delta u + F
 \]

 \[
 \text{Heat Transport Equation:} \quad \rho C_p u \cdot \nabla T + \nabla \cdot (-k \nabla T) = Q
 \]

- Parametric sweep for module heat generation rate:

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Parameter value list</th>
<th>Parameter unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_30cell(Gesamtv)</td>
<td>range(10, 5, 30)</td>
<td>W</td>
</tr>
</tbody>
</table>

Temperature Field
Velocity Field
Thermal Analysis
Ground Model

Objective 1
\[T_{\text{max}} \]

Objective 2
\[\Delta T \]
Thermal Analysis
GM & Active Fluid Cooling (AFC)

- Fluid channel is embedded in Al cover
- Inlet at module center
- Outlet at module edge
- Temperature probes along the fluid channel to visualize the heating of cooling Water
Thermal Analysis
GM & Active Fluid Cooling (AFC)

<table>
<thead>
<tr>
<th></th>
<th>10 W</th>
<th>15 W</th>
<th>20 W</th>
<th>25 W</th>
<th>30 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[K]

![Graph showing thermal analysis results for different power levels and cooling methods.]
Thermal Analysis
GM & Active Fluid Cooling (AFC)

<table>
<thead>
<tr>
<th></th>
<th>10 W</th>
<th>15 W</th>
<th>20 W</th>
<th>25 W</th>
<th>30 W</th>
<th>10 W</th>
<th>15 W</th>
<th>20 W</th>
<th>25 W</th>
<th>30 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td></td>
</tr>
<tr>
<td>GM&AFC</td>
<td></td>
</tr>
</tbody>
</table>

[K]

Thermal Analysis
GM & Active Fluid Cooling (AFC)
Thermal Analysis
GM & Internal Cooling Fin (ICF)
Thermal Analysis

GM & Internal Cooling Fin (ICF)

<table>
<thead>
<tr>
<th>10 W</th>
<th>15 W</th>
<th>20 W</th>
<th>25 W</th>
<th>30 W</th>
<th>10 W</th>
<th>15 W</th>
<th>20 W</th>
<th>25 W</th>
<th>30 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM&ICF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[K]

10 W 15 W 20 W 25 W 30 W

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Thermal Analysis
GM & Active Fluid Cooling (AFC)

<table>
<thead>
<tr>
<th></th>
<th>10 W</th>
<th>15 W</th>
<th>20 W</th>
<th>25 W</th>
<th>30 W</th>
<th>10 W</th>
<th>15 W</th>
<th>20 W</th>
<th>25 W</th>
<th>30 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td>●</td>
<td>●</td>
<td>▲</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>GM&AFC</td>
<td>●</td>
<td>●</td>
<td>▲</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

[K]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Thermal Analysis
GM & AFC & ICF

<table>
<thead>
<tr>
<th></th>
<th>10 W</th>
<th>15 W</th>
<th>20 W</th>
<th>25 W</th>
<th>30 W</th>
<th>10 W</th>
<th>15 W</th>
<th>20 W</th>
<th>25 W</th>
<th>30 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td></td>
</tr>
<tr>
<td>GM&AFC</td>
<td></td>
</tr>
<tr>
<td>GM&AFC&ICF</td>
<td></td>
</tr>
</tbody>
</table>

[K]

10 W 15 W 20 W 25 W 30 W
Active Fluid Cooling Design in a High Power Battery Module

Summary

- Simulative thermal analysis is a helpful step before conducting actual tests

- Temperature distribution in GM (no cooling concept is involved) is uneven
 - differences in cell cycle life within the same battery module
 - a shortened cycle life of the entire module

- By involving detailed measurement data of employed cells, both the complexity and the accuracy of the simulation models can be increased

- Effects of passive cooling concepts are analyzed

<table>
<thead>
<tr>
<th></th>
<th>ICF</th>
<th>AFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature uniformity</td>
<td>++</td>
<td>0</td>
</tr>
<tr>
<td>Reduction of cell temps</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>

- Combined systems with different passive cooling principles shall be involved for large and high power battery module
非常感谢！

FH Aachen University of Applied Sciences
Faculty of Aerospace Engineering - Energy Storage Systems

Ziyi Wu M.Sc.
Hohenstaufenallee 6
52064 Aachen | Germany

T +49.241.6009 52880
F +49.241.6009 52680
Wu@fh-aachen.de