Optimal Óang-Óang Ôontrol in Ôoupled Öynamical Ùystems

Hochschule RheinMain University of Applied Sciences, Wiesbaden Rüsselsheim, Germany

Introduction:

We investigate the coupled dynamics of cancer cells and healthy cells during fractionated cancer therapy. The problem is solved using optimization methods. The model achieves a state with efficient reduction of cancer cells and minimum damage to healthy

cells surrounding the tumor.

Computational Methods:

- The model is based on coupled rate equations taking into account
- partial recovery of cells (γ),
- different radiation sensitivity of tumor and healthy cells to radiation (a),
- growth rates (c) and death rates (b).
 We use the optimization module of COMSOL MULTIPHYSICS[®]. The control parameter is represented by the dosis rate u(t) which can be switched on (corresponding to a maximum)

Figure 2. dynamics of cancer cells and healthy cells in dependence on recovery rate for the healthy cells for optimized u(t): a) 3.10^{-3} , b) 5.10^{-3} , c) 7.10^{-3} , d) 1.10^{-2}

dose) and off (treatment free period)

 $\begin{aligned} \dot{x}_{1}^{H}(t) &= -a^{H} \cdot u(t) \cdot x_{1}^{H}(t) + c^{H} \cdot x_{1}^{H}(t) + \gamma^{H} \cdot x_{2}^{H}(t) \\ \dot{x}_{2}^{H}(t) &= a^{H} \cdot u(t) \cdot x_{1}^{H}(t) - b^{H} \cdot u(t) \cdot x_{2}^{H}(t) - \gamma^{H} \cdot x_{2}^{H}(t) \\ \dot{x}_{1}^{T}(t) &= -a^{T} \cdot u(t) \cdot x_{1}^{T}(t) + c^{T} \cdot x_{1}^{T}(t) + \gamma^{T} \cdot x_{1}^{T}(t) \\ \dot{x}_{2}^{T}(t) &= a^{T} \cdot u(t) \cdot x_{2}^{T}(t) - b^{T} \cdot u(t) \cdot x_{2}^{T}(t) - \gamma^{T} \cdot x_{2}^{T}(t) \end{aligned}$

The functional depending on the state vector (including all cell cell types, time, and dosis rate) is ($\alpha_1 = 0,3, \alpha_2 = 0,7$),

$$F(T, x, u) := -\alpha_1 x_1^H(T_{final}) + \alpha_2 x_1^T(T_{final})$$

Results:

Figure 3. dynamics of cancer cells and healthy cells in dependence on growth rate for optimized u(t): a) 2·10⁻³, b) 4·10⁻³, c) 1·10⁻², d) 2·10⁻³

Conclusions Simulations on the basis of coupled differential equations allows, for a

Figure 1. dynamics of cancer cells and healthy cells in dependence on initial value for the cancer cells for optimized u(t)

given parameter system, the optimization of fractionated radiative treatment.

References:

1.. M. Wannenmacher et al.: Strahlentherapie, Springer-Verlag, Berlin Heidelberg (2013).

 S. B. Curtis: Lethal and Potentially Lethal Lesions Induced by Radiation-A Unified Repair Model, Radiation Research 106, 252-270 (1986)
 H. Schättler, U. Ledzewicz: Optimal Control for Mathematical Models of Cancer, Springer (2015)
 A. Ergun et al.: Optimal Scheduling of Radiotherapy and Angiogenic Inhibors, Bulletin of Mathematical Biology 65, 407424 (2003).

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam