
Modelling of Asymmetric Incommensurable Torque Signals 

L. Kurmann1,2, P. Grubert2 
1University of Freiburg, IMTEK, Germany 
2University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Switzerland  
 

Abstract 

Asymmetric incommensurable torque (AIT) signals, 

are signals, that are asymmetric as well as unbalanced, 

e.g. incommensurable over one revolution. They can 

be achieved by exploiting magnetic nonpolar repulsion 

techniques [1], [2], [3], aiming at designing kinetic 

energy harvester (KEH) systems. In this paper we 

focus on the modelling of such AIT signals without 

focusing on the dynamics used in KEH systems, see 

also [1], [3]. AIT signals can be approximated with 

several methods and all shown calculations are in full 

agreement with the classical Electromagnetic Theory. 

The first method is based on time consuming full 3D 

FE generated torque and force signals. The second 

method is using also FE generated torque and force 

signals, but they are calculated only in orthogonal 

directions, approximated with Fourier Series and 

normalized to provide 2D stiffness signals. The third 

approach focuses on filamentary current rings to 

calculate the magnetic field of permanent magnets 

(PMs) to generate in a purely analytical way the same 

force and torque signals as in the previous methods.  

Introduction 

Energy Harvesting is a technology for capturing non-

electrical energy from ambient energy sources, 

converting it into electrical energy and storing it to 

power wireless electronic devices [4–10]. The process 

of capturing mechanical energy such as shocks and 

vibrations is a subject area of energy harvesting 

requiring specific types of devices, so called kinetic 

energy harvesters (KEH) and there are many types of 

KEHs, [10–16]. AIT signals aimed to be used in KEH 

systems, employing here still the naming convention 

KEH, as effectively rotor mass and rotor inertia are 

used to start an everlasting oscillation in theory.  While 

searching for energy harvesting opportunities and 

motivated by the ideas in [17], we focused on 

modelling nonlinear PM spring systems with rotary 

and translatory DoFs.  

To achieve AIT-, or unbalanced torque-signals, several 

systems can be envisaged, the simplest is shown in 

Figure 1, consisting of one rotor PM and one stator 

PM. The rotor PM is revolving with 𝜙 and 

accompanied with at least one additional DoF, either 

radially in 𝑟 direction or axially in 𝑧 direction (or in 𝑟 

as well as 𝑧 direction). 

 

Figure 1. 1-3DoF rotary-translatory shaft movement with 

one stator-rotor disk PM magnet pair 

It is important to use a well-deliberate closed rotor PM 

trajectory to create an AIT signal. To do so, we need to 

define first the stiffness signal in all spatial directions.  

Problem Definition and Governing Equations  

First, it is most important to define the following 

assumptions for this modelling exercise. 

𝐅𝐦𝐚𝐠 = 𝑞(𝐄 + (𝐯 × 𝐁)) ≅ 𝑞(𝐯 × 𝐁) (1) 

The resulting magnetic force 𝐅𝐦𝐚𝐠 from the Lorentz 

force law is calculated given the charge 𝑞, the electric 

field- 𝐄, the magnetic field- 𝐁 and the velocity-vector 

𝐯. As in these KEH systems, velocities are extremely 

slow in respect to the speed of light, 𝐄 can be set zero 

(which is always assumed in calculations for electrical 

machines, see for instance [18]). Generally, magnetic 

forces will do no work on isolated electric charges 

[19], as a point charge has no dimensional extension 

and therefore, the created velocity 𝐯 due to the PM 

rendez-vous is in the same direction as the trajectory 

velocity 𝐯𝟎 of the rotor. 

𝑊𝑚𝑎𝑔 = ∫𝐅𝐦𝐚𝐠 ∙ 𝑑𝐥
𝑑𝐥=𝐯𝟎𝑑𝑡
→     ∫𝒒(𝐯 × 𝐁) ∙ 𝐯𝟎𝑑𝑡 = 0 (2) 

For the PM-based KEH systems proposed in this 

paper, we show that the calculated magnetic work 

𝑊𝑚𝑎𝑔 is unequal zero by applying three different 

methods and using (a) well-deliberated closed 

trajectories Γ, and (b) instead of using a point charge, 

a disk PM or a current loop (both having geometrical 

extensions). So, in contrast to (2), 

𝑊𝑚𝑎𝑔 = ∫𝐅𝐦𝐚𝐠 ∙ 𝑑𝐥 ≠ 0 (3) 
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The creation of stiffness signals for the nonlinear PM 

spring shown in Figure 1, we create first orthogonally 

placed FE torque and force signals, shown in Figure 2. 

They represent torque and force signals from disk 

magnets (the same disk PM geometry used on stator 

and rotor; air gap of PM pair is kept 1𝑚𝑚 for all 

simulations, if not otherwise mentioned; N52 disk 

magnets, residual magn. 𝐵 ≅ 1.445𝑇, 𝑑𝑅 = 𝑑𝑆 =

10𝑚𝑚 and ℎ𝑅 = ℎ𝑆 = 5𝑚𝑚; radius 𝑟0 = 27𝑚𝑚 from 

origin to the center of mass of each PM). In case we 

have two, three or four symmetrically placed PMs on 

the circumference of the rotor and stator, the created 

torque and force signal is two- three- or fourfold. By 

means of using the Maxwell Stress Tensor 𝜎, the 

normal vector pointing out from the PM 𝒏 and 

calculating the resulting force 𝐅 resp. torque 𝝉 over the 

corresponding surfaces 𝑆. 

𝑭 = ∮𝒏 𝜎 𝑑𝑆
 

𝑆

 (4) 

𝝉 = 𝒓 × 𝑭 (5) 

Note, that (4) is an identity to the otherwise necessary 

volume integral. This calculation is valid, as we deal in 

such KEH applications in quasi static field 

environments – if we keep the rotor revolution slow 

enough and no additional energy by E-fields is 

considered (1). (Whether the rotor is rotating with one 

revolution per year or one revolution per 𝑚𝑠, it is well 

below the propagation velocity of speed of light and 

accompanied 𝐄-fields can be neglected. In case the 

rotor is revolving much faster, in the order of < 1𝜇𝑠, 

such 𝐄 -fields must be considered and the KEH system 

becomes an antenna.) Such static fields can be 

computed with FE methods, setting 

∇ ∙ 𝐁 = 0 (6) 

The problem definition is given with (4)-(6) in the 

COMSOL GUI environment, using the magnetic 

fields, no current interface (mfnc).  

 
(a) 

 
(b) 

Figure 2. FE COMSOL simulated rotary shaft torque (a) 

and shaft force in z direction (b) using one stator-rotor PM 

pair, situation shown in Figure 1.  

The shown orthogonal static (mfnc) FE simulated four 

torque/force signals in 𝜙 and 𝑧 direction are shown in 

Figure 2. The physical meaning is explained 

exemplarily with the signal 𝜏𝜙: there needs to be 

mechanical torque energy pumped into the rotor, 

reaching the maximum negative torque of 𝜏𝑚𝑎𝑥− ≅

−0.305𝑁𝑚 at 𝜙 ≅ −8° and reaching at 𝜙 = 0° the 

instable point where for 𝜙 > 0° rotor starts 

accelerating until reaching 𝜏𝑚𝑎𝑥+ ≅ +0.305𝑁𝑚 (with 

maximal velocity close to 𝜙 = 26°). The torque 

envelope signal (𝜏𝑧) is created by using first an FE 

computed torque signal (orange curve; keeping the 

torque angle at its maximum |𝜙| ≅ 8° and sweeping 

subsequently with this fixed torque angle) in the axial 

𝑧 direction; the force signals 𝐹𝜙 and 𝐹𝑧 are created 

alike. Also depicted in Figure 2 are the Fourier-Series 

approximated signals, with even functions for 𝜏𝑧, 𝐹𝜙 

and odd functions for 𝜏𝜙, 𝐹𝑧. The 4th order normalized 

torque and force signals are 

𝑓𝜏(𝜙, 𝑧) ≅ 𝑓𝜏𝑟𝑎𝑑(𝜙) 𝑓𝜏𝑎𝑥(𝑧)

= (∑ 𝑏𝑛𝜏 sin(𝑛𝜏 𝜔𝜙𝜏  𝜙)
4

𝑛𝜏=1
)(𝑎0𝜏

+∑ 𝑎𝑛𝜏 cos(𝑛𝜏 𝜔𝑧𝜏  𝑧)
4

𝑛𝜏=1
) 

(7) 

𝑓𝐹(𝜙, 𝑧) ≅ 𝑓𝐹𝑎𝑥(𝑧)𝑓𝐹𝑟𝑎𝑑(𝜙)

= (∑ 𝑏𝑛𝑓 sin (𝑛𝑓 𝜔𝜙𝑓  𝑧)
4

𝑛𝑓=1
)(𝑎0𝑓

+∑ 𝑎𝑛𝑓 cos (𝑛𝑓  𝜔𝑧𝑓  𝜙)
4

𝑛𝑓=1
) 

(8) 

The corresponding 2D torque and force signals can 

also be written as 

𝜏𝑟𝑎𝑑(𝜙, 𝑧) = 𝐶𝑟  𝑓𝜏(𝜙, 𝑧) (9) 

𝐹𝑎𝑥(𝜙, 𝑧) = 𝑘𝑟  𝑓𝐹(𝜙, 𝑧) (10) 

with introduced stiffness constants 𝐶𝑟 (𝑁𝑚 𝑟𝑎𝑑⁄ ) and 

𝑘𝑟 (𝑁 𝑚⁄ ). They can be easily measured as the 

maximum break-torque respectively break-force. 

Figure 3 show these normalized 2D amplitude 

diagrams for the stiffnesses 𝑓𝜏, 𝑓𝐹 for the torque- and 

force-signals. 

 
(a) 

 
(b) 

Figure 3. Normalized 2D torque spring- (a) and force 

spring- (b) amplitude for ϕ and z direction, eq. (9) and (10) 

Note that outside the shown intervals of Figure 3, the 

torque-, force-signals are approximated to be zero. By 

introducing an axial cam movement 

𝑧𝑅(𝜙) = 𝐴𝑐𝑜 sin(𝜔𝑐𝑜  𝜙 + 𝜉𝑐𝑜) (11) 

where the lateral movement 𝑧𝑅 is constrained to the 

rotating DoF 𝜙 with a given cam amplitude 𝐴𝑐𝑜, an 

initial offset 𝜉𝑐𝑜 and an angular velocity 𝜔𝑐𝑜. In Figure 

4 a stator-rotor configuration with two rotor magnets 

(green dots) and three stator magnets (blue dots) are 

𝜏𝑧 

𝜏𝜙 

𝐹𝜙 

𝐹𝑧 
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considered. The axial movement is locked in a 

harmonic cam movement (green lines) following (11), 

 
(a) 

 
(b) 

Figure 4. Stator-rotor PM configuration axR2S3ml in 

developed view keeping the stator and rotor PM distances 

to each other at 10𝑚𝑚 (a) and front view (b) with axial 

z-direction harmonic wobbling rotor. 

applying 𝐴𝑐𝑜 = 3𝑚𝑚, 𝜉𝑐𝑜 = 0 and 𝜔𝑐𝑜 = 1. The 

imposed cam-based trajectory velocity vector 𝐯𝟎, 

follows  

𝐯𝟎 =
d

dt
(

𝑟0 cos𝜙(𝑡)

𝑟0 sin𝜙(𝑡)

𝑧𝑅(𝜙(𝑡))

) (12) 

In contrast to (2), this cam-based trajectory velocity 𝐯𝟎 

is not equal to the resulting ‘natural’ trajectory velocity 

vector 𝐯 when no cam is applied (during a stator-rotor 

PM rendez-vous with a PM that has geometrical 

extension). The dynamic motion of such a configured 

rotor system can be derived using Lagrange approach, 

see also [1, 3]. 

Numerical Models and Results 

The torque response on a stiff rotor with one stator-

rotor PM pair shown in Figure 2a can also be modeled 

with two axis symmetrical stator-rotor PM pairs in the 

same plane, shown in Figure 5a. In Figure 5b, again a 

stiff rotor with two rotor PMs is shown, this time the 

rotor PMs are not located in the same plane – 

simulation setup for model shown in Figure 4 (and a 

full 3D simulation is necessary, as the rotor PMs 

wobble in the z-axis with eq. (11)). 

 

 
(a) 

 
(b) 

Figure 5. Meshed geometry setups in FE COMSOL PM 

3D simulations (𝑚𝑚). The inner PMs sit on an invisible 

(stiff) rotor. In (a) a z-axis symmetric mesh is shown; (b) 

depicts a full 3D mesh simulation setup.  

Both models were simulated with magnetic fields no 

currents (mfnc) for stationary torque and force 

response. It has been verified that such static 

simulations are sufficient accurate for validating 

torque responses in PM setups [20]. Depending on the 

stator-rotor PM setup, it might be necessary to simulate 

statically the torque response from 0°…359° in 1° 

steps to accurately calculate the resulting torque signal. 

This is computationally intensive, using the Maxwell 

surface stress tensor method in COMSOL. The remedy 

to safe computing time is the introduced Fourier-Series 

method, see also [1]. Furthermore, it allows to do 

parameter sweeps, approximately 6000-times faster 

than FE COMSOL calculations. 

 
(a) 

 
(b) 

Figure 6. Resulting torque signals eq. (13) and 

accumulated energies eq. (14)-(16) by sweeping dl for 

stator-rotor PM configuration axR2S3ml and using a cam 

radius of 𝑟𝑐𝑎𝑚 = 15𝑚𝑚.  

Figure 6 depicts such an example sweep, where the 𝑧-

distance for the stator PMs to each other (the 𝑑𝑙-

distance, see also Figure 4a) is successively increased 

from 0,2,4… ,20𝑚𝑚 and simultaneously the wobbling 

rotor PMs are kept symmetrical in between the dashed 

blue stator PM lines. This method has also the great 

advantage that any PM geometry can be approximated 

– if in advance with an FE tool the accordingly 

orthogonal Fourier-Series parameters have been 

identified.  

 
Figure 7. Resulting normalized torque and force signals 

from setup in Figure 4 (Figure 5b).  

However, in case the PM geometry is limited to shapes 

of disk magnets (with magnetization direction parallel 

to the cylinder height), there are also purely analytical 

methods available, such as Biot-Savart law approach 

[21] or the Lorentz approach [22] – both methods are 

common to emulate purely analytically the magnet 

fields of permanent magnets [23]. The analytical force 

calculations for two filamentary (2D) current loops in 

any desired inclined 3D space position to each other 

are demanding to calculate (such forces could also be 
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calculated in 3D coil structures, approximating better 

the static magnetic field 𝐁 of a PM, but the analytical 

calculations are becoming most demanding to do and 

the force accuracy improvements are small.) Figure 7 

compares three different normalized torque and force 

calculations. The 1st (I) method using the Fourier-

Series approach, the 2nd (II), using the standard 

COMSOL method and the 3rd (III), described in [22]. 

However, only the 2nd method is calculating also the 

expected torque and force signals, which can be used 

for validation purposes (in the configuration 

axR2S3ml, the peak torque, force signals close to 

0.31𝑁𝑚, resp. 20𝑁). The % in the legend indicates the 

asymmetry of the according signal, where 50% 

indicates a balanced torque/force signal. The torque 

signal is clearly asymmetric and incommensurable 

(over one revolution). Figure 8a depicts customized 

PM geometry in the stator-rotor configuration shown 

in Figure 4 and Figure 5b. The two identical rotor 

magnets have a length (x) of 20𝑚𝑚, a depth (z) of 

4𝑚𝑚 and a max. height (y) of 12𝑚𝑚 (radius from 

origin to the rotor magnet tip 29.5𝑚𝑚), optimized 

airgap of 0.5𝑚𝑚 (instead of 1𝑚𝑚). The three identical 

stator magnets have the same dimensions as the rotor 

magnets, except for the height (13𝑚𝑚 in the center to 

the top); magnetization in the same as the disk 

magnets. Figure 8b shows the resulting COMSOL 

computed torque signals, disk PM vs. customized PM 

geometry. Using a customized PM geometry can 

enhance the asymmetric incommensurable torque 

signal considerably. 

 
(a) 

 
(b) 

Figure 8. Geometry setup (a) in FE COMSOL PM 3D 

simulations (𝑚𝑚); comparison of resulting torque signals 

(b) between disk PM and customized PM geometry.  

The forecasted torque energy surplus 𝑊𝜙, in stator-

rotor configuration axR2S3ml is 46.1𝑚𝐽, using 

𝑊𝜙 = ∫ (1 − 𝜇𝑟𝑎𝑑)𝜏(𝜙)
2𝜋

0

𝑑𝜙 (13) 

with the radial damping coefficient 𝜇𝑟𝑎𝑑 = 0 (no 

damping) and 𝜏(𝜙), the AIT signal. The accompanied 

lateral z-force component (|𝐹(𝜙) | ≅ 𝐹𝑁, if the 

amplitude is kept small enough) over one revolution is 

approximately zero and therefore also its energy 

component, given 

𝑊𝑧 ≅ ∫ 𝜇𝑎𝑥|𝐹(𝜙) | 𝑧𝑅(𝜙)
2𝜋

0

𝑑𝜙 ≅ 0 (14) 

with 𝜇𝑎𝑥 the axial damping coefficient and 𝑧𝑅(𝜙) 

given in (11).  It has been shown in [3], that this 

approximation is nearly exact also dynamically (over 

one revolution), even when considering nonlinear 

friction models, e.g. 𝜇𝑎𝑥 → 𝜇𝑎𝑥(𝜙′), see [24]. The 

corresponding tangential energy component 𝑊𝑡 

becomes 234.6𝑚𝐽, using 

𝑊𝑡 ≅ ∫ 𝜇𝑎𝑥|𝐹(𝜙) |𝑟𝑐𝑎𝑚

2𝜋

0

𝑑𝜙 (15) 

This energy component needs to be accordingly 

damped to generate an energy surplus. Note, that for 

(13)-(15) the mfnc FE COMSOL approximated signals 

𝜏, 𝐹 of Figure 7 have been used to calculate the 

energies. If the damping coefficient 𝜇𝑎𝑥 = 1 

(maximum damping) and the cam system has a radius 

𝑟𝑐𝑎𝑚 = 15𝑚𝑚, the resulting total energy is 

 𝑊𝑡𝑜𝑡 = 𝑊𝜙 − (𝑊𝑧 +𝑊𝑡) = −188.4𝑚𝐽 (16) 

e.g. approximately 4.1 times more energy needs to be 

pumped in than can be gained (see also Figure 6) – 

considering no additional involved rotor dynamics for 

the 𝑧𝑅 movement, eq. (11); for simulations with rotor 

dynamics, see [3]. Using existent low friction cam 

setups in examined study, when the damping 

coefficient is set accordingly low, an overall energy 

surplus might result. Therefore, using a nonresonant 

oscillator [1], [3] with a cam system, it is not 

unrealistic with a low friction cam setup to create an 

overall energy surplus. Note also, that infinite other 

stator-rotor PM configurations exist (the one discussed 

here could be stacked in 𝑧-direction) and it seems that 

the active patent [17] might describe one of such 

stator-rotor PM configurations. 

In case a parametric resonant oscillator [1] is used, no 

cam at all is needed, as the lateral (quasi-periodic) 

movement is created elegantly with the rotor inertia 

and a radial and lateral PM spring system. 

Conclusions 

It is stated that, in theory, by combining trajectories of 

a rotor with accordingly stator-rotor PM distributions, 

an asymmetric incommensurable torque signal is 

feasible. The presented trajectories have been limited 

in rotational- (𝜙) and translational- (𝑧) direction, 

excluding movements that involve also radial direction 

(changing rotor diameter distance 𝑟, see also Figure 1). 

However, we showed with three different approaches 

the same asymmetric incommensurable torque signal 

can be numerically simulated based on well accepted 

classic EM theory only. Also important in this study is 

the foresight, that magnet field distributions can exert 

energy and are not per se conservative fields. 

According to the presented results, the magnetic field 

itself is neither conservative nor non-conservative; it 
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all depends on the closed path trajectories followed 

through the field. Non-conservative trajectories can be 

generated which allow netto work while rotating a 

rotor over one full revolution – if the inevitable 

accompanied force signal (compare Figure 7) is 

accordingly damped in the cam-channel. The 

fundaments for the forecasted energy source, which is 

necessary to deliver this netto work, remain a research 

question, and further open-source experiments are 

indispensable to verify the presented theoretical 

claims. 
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