SIMULATION OF SOILING IN AN ARTIFICIAL DUSTING DEVICE

Fraunhofer-Institute for Solar Energy Systems ISE

Elisabeth Klimm, Summer Kochersperger, K-A Weiß

Fraunhofer Institute for Solar Energy Systems ISE

COMSOL Coference Lausanne, 23.10.2018

www.ise.fraunhofer.de

© Fraunhofer ISE

Group Service Life Analysis Fraunhofer ISE

Soiling of PV modules Example of soiling on Gran Canaria, Spain

Local dependency of soiling in deserts FEM: A tool to improve the understanding

- Use Numerical Simulation to
 - enhance experimental times
 - choose suitable locations and constitution of solar energy power plants

in terms of soiling mitigation

Sayyah et al. (2014) Energy yield loss caused by dust deposition on photovoltaic panels

FEM Simulation Approach

Going indoor - for better control of boundary conditions

- Reproducible conditions and actual set- up, fast to verify, fast to learn, ..
- FEM Model:
 - Geometry of actual artificial soiling device
 - Conservation of momentum

inlet velocity = outlet velocity

 "Wind" speeds chosen to match desert wind, set to ~ 5 m/s and kept stable during test and simulation

Pressure	Inlet Velocity	Outlet Velocity
[bar]	[m/s]	[m/s]
1.5 bar	5.7	5.5

Indoor test set-up for homogen-eous soiling

CAD rendering of the artificial dusting device

FEM Simulation Approach Simulation of the Lab Test

Comsol 5.3

Characterizing the System Physics and Turbulent Fluid Flow

Knudsen Number	Kn = 1.7 * 10 ⁻⁶		Kn < 0.01 and continuous flow (Navier-Stokes is valid)				
Mach Number	Velocity [m/s]	Mach Numl	ber	Compre ignored	Compression can be ignored (M < 0.3)		
	1	$2.9 * 10^{-3}$					
	5	0.015					
	10	0.029					
Reynolds Number	^൛ _{inlet} (m/s)	Re	Flow	Transition		Turbulent Fluid Flow for v_{inlet}	
	1	2.7 * 10 ³	Tra				
	5	13.5 * 10 ³	Tu				
	10	27.1 *10 ³	Tu	rbulent			

© Fraunhofer ISE

7

Characterizing the System Translation into COMSOL Language

- $k \varepsilon turbulence model$
- Wall function used, non-zero velocity for flow assumption for boundary layers
- Inconsistent Stabilization Method used to aid in convergence; parameter to minimize diffusion: $\frac{1}{CFLCMP}$

FEM Simulation of artificial soiling device Geometry of Models

Gesellschaft für Umweltsimulation e.V.

Scale Size Dimensions Mesh 2D Meshing was completed in sections Comparison of Scale Size

Functions

1

6

Statistics Mesh 2D: Comparison of Skewness in Sizes 1 and 3

Histogram of Number of Elements vs. Element Quality

11 Computer: Intel i7 processor-6700 CPU with 8GB RAM © Fraunhofer ISE

FEM Simulation Results 2D: Surface velocities (v_{inlet} =10 m/s), Mesh Size 3

ISE

Results 2D: 2D Geometry interpretation

Physics transferred to 3D Model, which will allow for correct round inlet and outlets to be studied.

Mesh 3D

Statistic

Elements

Quality

Ave Element

Comp. Time

Elements

Ave Element

Statistic

- **Resolution and** Quality of different mesh sizes analyzed
- Size 3 sufficient and selected

Mesh 1

0.6946

8,5 h

Mesh 3

0.6842

0.5

© Fraunhofer ISE

40

30

Results 3D: Stream line velocities, Mesh size 3

Validation (v_{inlet} = 5 m/s)

Summary Numerical Soiling Simulation

- Successfull CFD simulation of laboratory soiling tests with COMSOL 5.3a
- 2D model is not sufficient enough to capture results
 - 3D model necessary for accurate results
- 6 h computation time for 3D model
- Mesh Scale Size Geometries functions (Size 3) can successfully aid in obtaining better results

Outlook Environmental dependent multi-physics simulation

Thanks for your attention

Fraunhofer-Institute for Solar Energy Systems ISE

Elisabeth Klimm

Elisabeth.klimm@ise.fraunhofer.de www.ise.fraunhofer.de

Outlook Solutions for Particle Trajectories with 1000 particles

- 2D Results are not sufficient; Results with and without fluid-particle interaction show almost no difference
- 3D Model of particle tracing shows promising first results

With kind support and technical assistance of COMSOL

20 © Fraunhofer ISE

Solutions for Particle Deposition Models from COMSOL

