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INTRODUCTION: Atomically-thin two-dimensional (2D)

materials emerges as the most promising next-generation
membrane technology. Experimentally, large area patterned
graphene membrane! exhibits salt-rejection behavior upon
electrostatic gating even with pore size as large as 2010 nm.
Here we investigate the gate-tunable ionic transport using finite
element methods in COMSOL®.
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Figure 1. Experimental setup for the gate-tunable ionic transport
through graphene nanopores.

COMPUTATIONAL METHODS: The transport of ions is modeled
using the Poisson-Nernst-Planck model within the electrochemistry
module of COMSOL®. The potential and charge on graphene is
explicitly solved by the self-consistent equations for guantum
capacitance of 2D Dirac electron gas?>:

RESULTS: We study the ionic transport and investigate the origin

of ion rejection through graphene nanopores upon gating.
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Figure 3. Simulated electrostatic and electrochemical potentials

of the ions near a graphene nanopore.
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Figure 4. Simulated ionic rectification £ for ionic transport as a
function of Debye length A and gate voltage V..
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Figure 5. Comparison between the experimental ionic transport
and the model.

CONCLUSIONS:

lonic transport through graphene nanopores can be
modulated by gating.
£.=20 2. The performance of ionic diffusion rejection is highly related

with both the Debye length and gate voltage.

- 3. Graphene’s quantum capacitance greatly affects the surface
§ potential at the liquid interface and needs to be explicitly
! Initial concentration 0.1¢, ] oo .
| modeled for 2D-material-based nanofluidic devices.
|LCR H = 20Rg LCR 4. The FEM analysis can help the design and optimization of
2D-material-based nanoscale transport applications.
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