Modeling Gate-Tunable Ionic Transport Using Atomically Thin Patterned Graphene Membrane

T. Tian¹, R. Wyss², K. Yazda², H. G. Park², C.-J. Shih¹

1. Department of Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland

2. Department of Mechanical and Process Engineering, ETH Zürich, Zürich, Switzerland

INTRODUCTION: Atomically-thin two-dimensional (2D) materials emerges as the most promising next-generation membrane technology. Experimentally, large area patterned graphene membrane¹ exhibits salt-rejection behavior upon electrostatic gating even with pore size as large as 20±10 nm. Here we investigate the gate-tunable ionic transport using finite

RESULTS: We study the ionic transport and investigate the origin

of ion rejection through graphene nanopores upon gating.

element methods in COMSOL[®].

Figure 1. Experimental setup for the gate-tunable ionic transport through graphene nanopores.

Figure 4. Simulated ionic rectification ξ for ionic transport as a

COMPUTATIONAL METHODS: The transport of ions is modeled using the Poisson-Nernst-Planck model within the electrochemistry module of COMSOL[®]. The potential and charge on graphene is explicitly solved by the self-consistent equations for quantum capacitance of 2D Dirac electron gas^{2,3}:

function of Debye length $\lambda_{\rm D}$ and gate voltage $V_{\rm G}$.

and the model.

CONCLUSIONS:

- Ionic transport through graphene nanopores can be modulated by gating.
- 2. The performance of ionic diffusion rejection is highly related with both the Debye length and gate voltage.
- 3. Graphene's quantum capacitance greatly affects the surface

Figure 2. Geometry of the simulation domain with the boundary conditions.

- potential at the liquid interface and needs to be explicitly modeled for 2D-material-based nanofluidic devices.
- The FEM analysis can help the design and optimization of 2D-material-based nanoscale transport applications.

REFERENCES:

- 1. Choi et al., Multifunctional Wafer-Scale Graphene Membranes for Fast Ultrafiltration and High Permeation Gas Separation , *Sci. Adv., in press* (2018)
- 2. Tian et al., Doping-Driven Wettability of Two-Dimensional Materials: A Multiscale Theory, *Langmuir*, 33, 12827, (2017)
- 3. Tian et al., Multiscale Analysis for Field-Effect Penetration through Two-Dimensional Materials, *Nano Lett.*, 16, 5044 (2016)