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Vanadium Redox Flow Battery (VRFB)

http://energystorage.org/energy-storage/technologies/vanadium-redox-vrb-flow-batteries
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Negative Electrode:

- Periodic Replacement
of membrane 

Challenge: High cost/kWh
- Vanadium, membrane & pumps

Schematic diagram
of VRFB battery

Need to reduce the cost!



Soluble Lead Redox Flow Battery (SLRFB) 
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It’s simple and economical!

Challenge: Low cycle life 
(~100-2000)
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Design Experiments to Probe the Role of 
Natural Convection

Without any mixing cell are able to run 
40 cycles, why? Or why it is able to 
charge at constant current?
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Schematic diagram of standard cell (On wall electrodes cell design)

➢ Detailed investigation of natural convection in standard and 
alternative cell designs of SLRFB

➢ Quantitative experimental validation of predicted flow field

Objectives of Work
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Model Equations
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Volume Expansion Co-eff: (6)



Initial & Boundary Conditions
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Modeling of Standard Cell (on wall electrodes design) 

There is a strong electrolyte circulation due to natural convection!
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Experimental Validation of Flow Field
Using PIV Technique

Experimental Set-up for Particle Image Velocimetry



Qualitative Validation of Flow Field in Standard Cell 

PIV Experiment Charge Discharge

Simulations are able to predict the actual flow pattern!

Flow prediction: @20s

mm/s

std-15mm
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Modeling of Lift Cell (off wall electrodes design) 

0 2000 4000 6000
1.90

1.95

2.00

2.05

2.10  lift-8mm 

 std-8mm 

C
e

ll
 P

o
te

n
ti

a
l 

(V
)

Time (s)

Simulation

2000s gain

Model is able to predict the observe electrochemical behaviour !



1 pc 2 pcs 3 pcs 6 pcs

Effect of Electrodes Splitting on Velocity Field

Splitting of electrodes improves electrolyte circulation!

Charging: 20s

mm/s
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Discharging: 20 s

Splitting of electrodes improves electrolyte circulation!
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Effect of Electrodes Splitting on Velocity Field



Effect of Electrodes Splitting and Staggering on 
Cell Performance 

Splitting and staggering of electrodes into multiple pieces provides 
better mixing of electrolyte Compared to single piece of electrodes!
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Effect of External Looping on cell Performance

Charge Discharge

mm/s mm/s

External looped cell improves mixing and it performs quite similar to 
the 6 pieces splitted electrodes design.

Velocity field Cell Potential
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❑Model is able to capture strong natural convection in the cell

❑ Flow predictions and PIV measurements show good qualitative
agreements

❑ Electrochemical models and experimental data are in good
agreement

❑ Splitting of electrodes into multiple pieces and external looing
improves electrolyte mixing and provide charging for longer
time

Conclusions



Thank you! ☺


