

MODELING AND OPTIMIZATION OF TERAHERTZ-PHOTOCONDUCTIVE ANTENNA (THz-PCA)

Nimisha Arora

Amartya Sengupta, Aparajita Bandyopadhyay Department of Physics, IIT Delhi, India

- nimishaarora051996@gmail.com

CONTENTS

- > INTRODUCTION
- > MODELLING OF THZ-PCA
- > IMPLEMENTATION IN COMSOL
- > SIMULATION
- > RESULTS

INTRODUCTION

Frequency (Hz)

https://www.researchgate.net/publication/253065479 Terahertz imaging systems A non-invasive technique for the analysis of paintings/figures?lo=1

MODELLING OF THZ-PCA

Material Property	Unit \((SI)	Au	LT-GaAs	Si	Air
Relative permeability	1	1	1	1	1
Relative permittivity	1	-22.5	12.9	11.7	1
Electrical conductivity	S/m	2400	1000	1.5e-6	1.4e-11

$$E_{THz}(\mathbf{r},t) = -\frac{1}{4\pi\epsilon_0c^2}\frac{\partial}{\partial t}\int \frac{J_s\left(\mathbf{r}',t-\frac{|\mathbf{r}-\mathbf{r}'|}{c}\right)}{|\mathbf{r}-\mathbf{r}'|}\,ds'$$

IMPLEMENTATION WITH COMSOL

MESHING AND BOUNDARY CONDITION

SIMULATION

- Optimization
- Optical Response: Solving Maxwell equation using FEM solver
- Electrical Response
- Transient photo-current measurement.

OPTIMIZED RADIATION PATTERN AND PARAMETER:

THz-PCA Parameter	Strip dipole antenna, Fig. 2(A)	Hertzian dipole antenna, Fig. 2(B)	Hertzian dipole antenna, Fig. 2(C)
r _{antenna} (μm)	75.76	93.46	100, 37.5b/w strip
gap _{size} (μm)	19.74	20, monotonic increase with r	20, monotonic increase
$l_{antenna}(\mu m)$	5	6, monotonic increase with g	3.75
Directivity(dB)	2.9619	3.0019	2.8052

Optimized Far-field pattern

OPTICAL RESPONSE OF THZ-PCA AND FAR-FIELD PATTERN:

TRANSIENT PHOTO-CURRENT CALCULATION:

Summary:

- •The THz-PCA contribute to the compact, inexpensive, low profile future THz wireless communication system.
- •Enhancing the output power, shrinking the size of the systems, enabling high speed frequency sweep and data acquisition.

REFERENCES

- Fattinger, C., & Grischkowsky, D. (1989). THz beams. Applied Physics Letters, 54(6), 490-492
- Burford, N. M., El-Shenawee, M. O., O'neal, C. B., & Olejniczak, K. J. (2014). THz imaging for nondestructive evaluation of packaged power electronic devices. Int. J. Emerg. Technol. Adv. Eng, 4(1), 395-401.
- Auston, D. H. (1983). Subpicosecond electro-optic shock waves. Applied Physics Letters, 43(8), 713-715.
- Auston, D. H., Cheung, K. P., & Smith, P. R. (1984). Picosecond photoconducting Hertzian dipoles. Applied physics letters, 45(3), 284-286.

Poisson's drift-diffusion equation and Maxwell's equation

$$\begin{split} \varepsilon_0 \nabla. \left(\varepsilon_r \nabla V \right) &= \left. q(n-p-N_D+N_A) , \right| \\ \frac{\partial n}{\partial t} &= \left. -\frac{1}{q} \nabla. \left\{ -\mu_n q \nabla (V+\chi) n + \mu_n k_b T G \left(\frac{n}{N_c} \right) \nabla n \right\} - \\ & r(x,y,z) + g(x,y,z,t) , \\ \\ \frac{\partial p}{\partial t} &= \frac{1}{q} \nabla. \left\{ -\mu_p q \nabla \left(V + \chi + E_g \right) p + \ \mu_p k_b T G \left(\frac{p}{N_v} \right) \nabla p \right\} - \\ & r(x,y,z) + g(x,y,z,t) \end{split}$$

 $\Delta \times \mu_{\rm r}^{-1} \left(\Delta \times \vec{E} \right) - k_0^2 \left(\epsilon_{\rm r} - \frac{j\lambda\sigma}{2\pi\epsilon\epsilon} \right) \vec{E} = 0$

Symbol	Description	Units	Value
$\epsilon_{ m r}$	LT-GaAs	None	12.9
N_D	Donor doping	$1/cm^3$	1e16
	concentration		
N_A	Acceptor doping	$1/cm^3$	0
	concentration	à	
μ_n	Electron mobility	m ² /V/s	0.8
$\mu_{\mathbf{p}}$	Hole mobility	$m^2/V/s$	0.047
$\mathbf{E}_{\mathbf{g}}$	Bandgap	V	1.424
χ	Electron affinity	V	4.07
T	Room temperature	K	300
$\tau_{\mathbf{n}}$	SRH electron lifetime	S	480e-12
$\tau_{\mathbf{p}}$	SRH hole lifetime	S	480e-12
Cn	Auger electron	cm^6/s	7e-30
	coefficient		
c_p	Auger hole coefficient	cm ⁶ /s	7e-30
$\mathbf{n}_{i,eff}$	Effective intrinsic	$1/m^3$	1.23e-12
	carrier concentration		
V_{btas}	Bias Voltage	V	30
λ	Free space wavelength	nm	800
Pave	Average laser power	mW	3.57
$\mathbf{f_p}$	Laser pulse repetition	MHz	80
	rate Pulse x-axis center		0
$\mathbf{x_0}$	location	μm	U
V-	Pulse y-axis center	11799	0
y 0	location	μm	0
t ₀	Pulse center location	ps	2
-0	(time)	P	-
$\mathbf{D}_{\mathbf{x}}$	Pulse HPBW (x	μm	3
- 2	direction)		
$\mathbf{D}_{\mathbf{y}}$	Pulse HPBW (y	μm	3
,	direction)	•	
$\mathbf{D_t}$	Pulse FWHM (time)	fs	133
$\mathbf{k}_{\mathbf{pc}}$	Photoconductor	None	0.0625
•	extinction coefficient		
	of LT-GaAs		
â _e	E _{inc} polarization unit vector	None	â _x

$$D_{ ext{dB}} = 10 \cdot \log_{10} iggl[rac{D}{D_{ ext{reference}}} iggr].$$

$$D = \frac{2}{1 - \cos\frac{\theta}{2}}$$

$$G = 10\log(\epsilon D)$$

Directivity

- In <u>electromagnetics</u>, **directivity** is a parameter of an <u>antenna</u> or <u>optical system</u> which measures the degree to which the radiation emitted is concentrated in a single direction. It measures the <u>power density</u> the antenna radiates in the direction of its strongest emission, versus the power density radiated by an ideal <u>isotropic radiator</u> (which emits uniformly in all directions) radiating the same total power.
- An antenna's directivity is a component of its gain; the other component is its (electrical) efficiency. Directivity is an important measure because many antennas and optical systems are designed to radiate electromagnetic waves in a single direction or over a narrow angle. Directivity is also defined for an antenna receiving electromagnetic waves, and its directivity when receiving is equal to its directivity when transmitting.
- The directivity of an actual antenna can vary from 1.76 dBi for a short dipole, to as much as 50 dBi for a large dish antenna.