Computational Analysis of Metal Hydride Reactor for Thermal Energy Storage

Aswin N.¹, Pradip Dutta¹, S. Srinivasa Murthy²

¹Department of Mechanical Engineering ²Interdisciplinary Centre for Energy Research

Indian Institute of Science Bengaluru

Thermal Energy Storage

- Heat storage systems stores available heat for later use
- Thermochemical heat storage
 - Reversible chemical reaction with considerable amount of heat of reaction
 - High values for preliminary performance estimates
 - Possibility of storage at atmospheric temperature
- Metal hydrides
 - Already have undergone a lot of research for hydrogen storage

Metal hydrides: Thermal Energy Storage

Reactors

- Enclose porous bed of powdered metal with pressurized gas and heat transfer equipment
- Reactor for heat absorption and release
 - Minimum heat loss to surroundings
 - Easy transport of heat from/to heat transfer fluid to/from porous metal hydride bed
 - Minimum heat capacities for passive materials
 - Higher discharge temperature
- Reactor for hydrogen storage
 - Easy removal/addition of heat to facilitate hydrogen absorption/release

Reactor : Initial configuration

- Radial layout of U-tubes
 - Hotter legs in the core
- Filter enclosing metal around the tube bundle
- Outer shell enclosing hydrogen supply
- With/without fins

Reactors : Simulation

- Chemical reaction
 - Metal hydride formation/decomposition
- Gaseous hydrogen transport through solid porous metal bed
 - Absorption/liberation of hydrogen by/from metal
- Heat transfer from/to the heat transfer fluid
 - Heat generation/consumption in the bed due to hydride formation/decomposition reaction

Reactors : Simulation – COMSOL Multiphysics[®]

- Geometry single slice asymmetry removed
- Chemical Reaction Engineering
 - (Initially by Coefficient Form PDE from mathematics)
 - Chemistry
 - Transport of Diluted Species
- CFD
 - Laminar/Turbulent Flow
 - Darcy's law/Free and Porous media Flow
- Heat Transfer
 - Heat Transfer in Porous Media

Couplings

- Laminar flow + Heat Transfer in Porous Media
- Darcy's Law + Heat Transfer in Porous Media
- Chemistry
 - Mass source Darcy's law
 - Heat Source Heat Transfer in Porous Media
 - Reaction Transport of Dilute Species

Operating conditions

- Material *LaNi*₅
- Hydrogen pressure 3 bar
- Heat Transfer fluid inlet 303 K at 0.5 ms^{-1}
- Initial state of reaction equilibrium corresponding to 1 bar, 303 K
- Slice corresponding to 6 tube arrangement
- Annular fins on inner and outer arms

Core temperature

Extent of reaction

Heat Transfer Fluid : Outlet temperature

Amount of hydride

Thank You.