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Abstract: Two important properties of the
haematopoietic stem cells are used in the ther-
apy of various blood diseases, namely: a) rapid
migratory activity and ability to ”home” to their
niche in the bone marrow; b) high self-renewal
and differentiation capacity, responsible for the
production and regulation of the three blood cell
types. A mathematical model for a) consisting of
a chemotaxis system of partial differential equa-
tions with nonlinear boundary conditions is im-
plemented in COMSOL Multiphysics, using the
Partial Differential Equation mode. The results
from computer simulation are analyzed with re-
spect to the quality of the obtained solution.
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1. Introduction

Haematopoietic stem cells (HSCs) in bone mar-
row give birth to the three blood cell types, be-
cause of their a)rapid migratory activity and
ability to ”home” to their niche in the bone mar-
row and b)high self-renewal and differentiation
capacity, responsible for the production and reg-
ulation of the three blood cell types. These two
properties of HSCs play a key role in the therapy
of various haematological diseases, including
leukaemia, which are characterized by abnormal
production of particular blood cells. The first
step for such treatment is chemotherapy and a
whole body irradiation to eradicate the patient’s
haematopoietic system. The second step is the
transplantation of HSCs obtained from the mo-
bilized peripheral blood of a donor. After trans-
plantation, HSCs find their way to the stem cell
niche in the bone marrow. Various factors are in-
volved in the mobilization and homing processes
(see, e.g. [4,7]). It has been shown that human
HSCs migratein vitro and in vivo following the
gradient of a chemotactic factor SDF-1 (stromal
cell-derived factor-1) produced by stroma cells.

Upon homing HSCs have to multiplicate and dif-
ferentiate rapidly (under the action of specific
proteins, known as colony stimulating factors)
to regenerate the blood system. The approach
”trial-error” is not recommended for questions
like ”Is the gathered amount of HSCs enough
for a successful regeneration of the blood sys-
tem?” or ”How to shorten the period in which
the patient is missing their effective immune sys-
tem?” that arise naturally in the clinical practice.
To address them and many others related to un-
derstanding and predicting of human physiologi-
cal processes in health and disease, the computer
modelling (CM) has become a classical investi-
gation tool. CM gained its popularity from one
side because of the rapid growth in the devel-
opment of high performance computer facilities,
and from another side because it gives possibil-
ity, e.g., for: i) economy of expensive laboratory
and nature experiments; ii) investigation of pro-
cesses for which direct measurements and obser-
vations are impossible; iii) substantial accelera-
tion of the time required to verify hypothesis for
the behaviour of the considered phenomenon or
process.

The attention in the current work is focused
on CM of HSCs migration. The initial mathe-
matical model for our investigations is proposed
by A. Kettemann, M. Neuss-Radu in [3]. The
HSCs migration in the direction of chemoattrac-
tant, produced by stroma cells is described by a
chemotaxis system of nonlinear partial differen-
tial equations. The unknowns of the model are
concentrations of the HSCs, of the chemoattrac-
tant SDF-1 and of the stem cells bound to stroma
cells on part of the boundary. The model is im-
plemented in COMSOL Multiphysics, using the
Partial Differential Equation (PDE) mode. The
chemotaxis system is represented by a system of
two PDEs, where the COMSOL opportunity to
add an ODE on part of the boundary is used.

The available in the PDE mode methods for
time integration, as well as for direct and itera-
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tive solution of the linearized system are com-
pared on the base of test data from experiments
in vitro. The results from computer simulation
are analyzed with respect to questions like ”Is
the positivity of the solution ensured?”, ”Which
solver is better for the considered problem?”,
”How close are the obtained solutions to the real
behaviour of the populations?”

The remainder of the paper is organized as fol-
lows. The initial mathematical model for chemo-
tactic movement of HSCs is presented in sec-
tion 2. Section 3. is devoted to the COMSOL
implementation of the model and on the methods
used for simulation. The results from the numer-
ical tests and their analysis are described in sec-
tion 4. Concluding remarks and some notes on
ongoing and future work are made in section 5.

2. The Mathematical Model

The exposition in the current section follows the
one in [3], where the initial for our investigations
mathematical model for the chemotactic move-
ment of HSCs is proposed. The classical chemo-
taxis system is adapted there to the observations
made in a specific experimental assay, involving
stem cells and stroma cells placed at opposite
corners of a plate called Terasaki well.

A domainΩ ∈ R
2 of classC1 representing

the Terasaki well is considered. The boundary
∂Ω = Γ1 ∪ Γ2 consists of two parts (see Fig-
ure 1), whereΓ1 ∩ Γ2 = ∅ andΓ2 is a closed
set. The stroma cells are cultivated in the part
Γ1 of the boundary. The outer unit normal to the
boundary∂Ω is denoted byν. The unknowns
of the model are the concentrations(t, x) of the
stem cells in the domainΩ, the concentration
a(t, x) of the chemoattractant (SDF-1), and the
concentrationb(t, x) of the stem cells bound to
the stroma cells at the boundary partΓ1.

Ω
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2

ν

Γ

stroma cells
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Figure 1: Computational domain

The evolution of the concentrationss(t, x)
anda(t, x) is described by the following chemo-
taxis system

∂ts =∇ · (ε∇s − s∇χ(a)) , (0, T )× Ω(1)

∂ta =Da∆a − γas , (0, T )× Ω(2)

together with the boundary conditions

−(ε∂νs−sχ′(a)∂νa) =(3)
{

c1s − c2b , on (0, T )× Γ1

0 , on (0, T )× Γ2

,

Da∂νa =

{

β(t, b)c(x), on (0, T )× Γ1

0, on (0, T )× Γ2

.(4)

The evolution of the concentrationb(t, x) is
described by the ODE

(5) ∂tb = c1s − c2b , on (0, T ) × Γ1

andb = 0, on (0, T )×Γ2. The following initial
conditions are also imposed

(6)
s(0) = s0, a(0) = a0 in Ω,

b(0) = b0 onΓ1 .

Equation (1) describes the random migration
of the HSCs, with random motility coefficientε,
as well as the directional migration in response
to the spatial gradient of the chemoattractant.
The chemotactic sensitivity functionχ(a) spec-
ifies the ability of the HSCs to sense the attrac-
tant gradient. Equation (2) describes the diffu-
sion (with coefficientDa) of the chemoattrac-
tant and its consumption due to binding to the
receptors expressed on the stem cell membranes.
The consumption rate is proportional to the prod-
uct of the concentrations of stem cells and of the
chemoattractant, with a rate-constantγ.

The boundary condition (3) describes the at-
tachment and detachment of stem cells at the part
of the boundary coated with stroma cells. The
boundary condition (4) models the production
of the chemoattractant by the stroma cells. The
production rate is proportional to the concentra-
tion c(x) of stroma cells, which is assumed to
be fixed for the investigations in the paper [3].
The proportionality functionβ(t, b) is a nonlin-
ear function of the time and of the concentration
b of the bound haematopoietic stem cells. At
the beginning of the experiment the stroma cells
need some time for adaptation to their environ-
ment. The dependence ofβ on time is used to
model this fact. The ODE (5) describes the evo-
lution of the bound stem cells due to the attach-
ment and detachment of stem cells at the partΓ1

of the boundary.



Using the standard notations for Sobolev
spaces (see, e.g., [2,6]), the following assump-
tions are made on the data:
(7)

c ∈ H
1

2 (∂Ω),

0 ≤ c(x) ≤ c̄, x ∈ Γ1 and c ≡ 0, x ∈ Γ2;

β ∈ C1(R × R, R), β(0, b0) = 0,
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;

s0 ∈ L∞

+ (Ω), a0 ∈ L∞

+ (Ω) ∩ H2(Ω),

b0 ∈ Sb0 ∩ H
1

2 (Γ1),

Sb0 =
{

b ∈ L∞

+ (∂Ω) | b(x) = 0 for x ∈ Γ2

}

.

Regarding the existence of unique solution of the
system (1) –(6) it is proved in [3], that the theo-
rem given below holds true.

Theorem 2.1 Let the data of the model sat-
isfy the assumptions (7). Then there exists
T > 0 and a unique weak solution(s, a, b)
of the system (1)–(6). This solution is posi-
tive and has the additional regularity proper-
tiesa ∈ L2(0, T ; H2(Ω)) ∩ C([0, T ]; H1(Ω)) ∩
L∞(0, T ; L∞(Ω)) andb ∈ C([0, T ]; L2(∂Ω)).

3. Use of COMSOL Multiphysics

COMSOL Multiphysics provides various ap-
plication modules for implementation, solution
and postprocessing of a particular mathematical
model. Results in the current paper represent our
first experience with COMSOL Multiphysics.
The features used upto now are described in this
section. Possible application modes for further
investigations on the topic are mentioned in sec-
tion 5.

To implement a particular model in COM-
SOL Multiphysics, we have first to decide which
mode(s) to use, and then to define the geome-
tries, physics, local and global expressions and
equations, initial and boundary conditions. Af-
terwards solution method should be chosen.

HSCs migration is modelled by a coupled
system of two nonlinear advection-diffusion-
reaction equations defined on the whole domain
Ω and one nonlinear ordinary differential equa-

tion defined on part of the boundary in the pres-
ence of nonhomogeneous Neumann boundary
conditions. As a starting point for our simula-
tions with COMSOL, we have chosen the Partial
Differential Equation (PDE) application mode,
since it gives the opportunity to directly repre-
sent the chemotaxis system (1)–(6) in coefficient
form. The equation (5) is modelled by the fea-
ture of COMSOL to add an ODE in a weak form
on part of the boundary. The computational do-
main is defined according to the test example
described in the next section. The parameters
and functions involved in the model are defined
in the appropriate sections of the model tree –
functions, constants, global and subdomain ex-
pressions. Triangular finite elements with the
default Lagrange Quadratic shape functions are
used to generate the mesh and to obtain the dis-
crete problem.

There are two possibilities in COMSOL Mul-
tiphysics for time integration, namely backward
differentiation formula (BDF) or generalizedα
method. We have presented below results with
the BDF, since it is robust method that is com-
monly used for a wide range of problems. The
general behaviour of the solution obtained using
the generalizedα method does not differ from
the one with BDF. The system is solved with the
default values for time dependent solver, with
automatic choice of the nonlinear solver. COM-
SOL provides five direct and five iterative solvers
for the linearized system. And for each of the
iterative solvers there is a choice among six pre-
conditioners depending on the properties of the
problem. At the current stage of our investiga-
tions the PARDISO direct solver is used and the
GMRES iterative one, with Incomplete LU pre-
conditioner. We should note here that GMRES
was tested with the other preconditioners, but the
method was not convergent with them.

4. Experimental Results

At the beginning of this section the values of the
coefficients and functions involved in the model
are given, followed by the results from the nu-
merical simulation and their analysis.

4.1. Test Data

We use the test data from [3], where rectan-
gular domainΩ = (0, 1.5) × (0, 1) is consid-
ered. The size of the time step is∆t = 0.1.
The stroma cells are concentrated on the right
boundaryΓ1 = {x1 = 1.5}, where they are
mainly distributed in three clusters described by
c(x2) = 0.01(1 + 0.2 sin(5πx2)). The function



β(t, b) in the production rate of the chemoattrac-
tant is chosen as

β(t, b) = V (t)β∗(b) with

V (t) =

{

4t2(3 − 4t) for t ≤ 0.5
1 for t > 0.5

}

andβ∗(b) =
0.005

0.005 + b2
.

HereV (t) describes the adaptation of the stroma
cells to their environment andβ∗ models the in-
hibition in the production of chemoattractant for
high concentrations of attached stem cells.

The numerical tests in [3] are made for the
linear case of chemotactic sensitivity function:
χ(a) = χ a with χ = 10. According to the
overview in [5], χ(a) may be found in the bi-
ological literature in three more forms, namely

(8)
χ(a) = χ log(a + c),

χ(a) =
χ a

1 + c a
, χ(a) =

χ a2

1 + c a2

with constantsχ > 0 andc ≥ 1. We have per-
formed additional numerical tests withχ(a) =
log (a). The values for the rest of the param-
eters areε = 0.0015, Da = 2, γ = 0.1,
c1 = 0.3 and c2 = 0.5. The initial condi-
tions area0 = 0, b0 = 0, s0(x1, x2) = (1 +
cos(5π(x1−0.4)))sin(πx2) for 0.2 ≤ x1 ≤ 0.6
ands0(x1, x2) = 0 otherwise.

4.2. Results from Computer Simulation

We focus our attention on the question ”How
does the choice of the numerical method influ-
ence the solution of the problem?”. We have
compared the solution with

• two sizes of the mesh, which result to 1723
and 6643 degrees of freedom (dof) respec-
tively;

• two solvers – direct PARDISO and iterative
GMRES with ILU preconditioner; and

• two choices of the chemotactic sensitivity
functionχ: χ = 10a andχ = log(a).

The obtained results are illustrated with the
eight plots in Figures 2, 3, 4 and 5, for values
10, 30, 45 and 100 ofT , respectively. The upper
plot in all of them is for the populationss(t, x)
and b(t, x) obtained with GMRES/ILU on the
coarser mesh with 1723 dof, and one can observe
hows andb are changed with the time. The bot-
tom plot in Figure 2 is for the higher number of
dof, namely 6643, forT = 10 and in both cases
the system is solved with GMRES/ILU. It is seen

dof = 1723

dof=6643

Figure 2: Model data – solutions(t, x) andb(t, x),
T = 10, GMRES/ILU.

there that on the finer mesh the distribution ofs

is more uniform, and the ranges for the change of
b are larger than those on coarser mesh, with neg-
ative values ofb for both mesh sizes. One pos-
sible reason for the latter effect is that the used
discretization and solution methods and/or soft-
ware parameters lead to numerical instabilities
and loss of the positivity property of the solution.

The bottom plot in Figure 3 is for the smaller
mesh, but changedχ. The solution forT = 30
obtained with GMRES/ILU is presented. This
figure illustrates the general behaviour for the
considered mesh sizes, solvers and values ofT ,
namely that the solution with the two choices of
χ does not differ qualitatively and quantitatively
from each other.

The direct and iterative solvers are compared
in Figure 4. Slight differences in the lower
bounds for the change of the populations and in
their distribution are observed in all compared
values ofT , not only for the presented here
T = 45.

In the last Figure 5 the solution fora andb,
obtained with GMRES/ILU is given on the bot-



χ = 10a

χ = log(a)

Figure 3: Model data – solutions(t, x) andb(t, x),
T = 30, GMRES/ILU.

tom plot. It is seen that with the time (T = 100),
the distribution of all three populations becomes
uniform.

4.3. Discussion

The plots presented in this paper differ from
those in [3] forT = 45 andT = 100 and, re-
spectively, from the observations made in the ex-
perimentin vitro. Namely, the migration of the
HSCs towards stromal cells is not clearly seen,
but only the flattering due to diffusion. Possi-
ble reasons for this behaviour are the different
mesh sizes and the different solvers used by the
authors of the model. The numerical tests in [3]
are performed with finite element tool Gascoigne
(www.gascoigne.de) for solving partial differen-
tial equations, developed in the Numerical Meth-
ods group of Prof. Dr. Rolf Rannacher, Uni-
versity of Heidelberg. Their solution method
for parabolic equations is based on the Rothe
method with explicit Euler scheme with constant
time steps.

The observed here oscillations and negative
values of the unknowns for smaller times, are

GMRES/ILU

PARDISO

Figure 4: Model data – solutions(t, x) andb(t, x),
T = 45.

possibly due to numerical instabilities of the
used methods. Explicit Euler method, which
avoids them is not included (to our knowledge)
in the COMSOL solution methods. As it is
written in the Modelling Guide, Comsol Multi-
physics provides a set of stabilization techniques
to restore the numerical stability. These tech-
niques are available only in part of the modules
and PDE mode is not among them. Therefore
in order to use them we should study the fea-
tures of the modes providing stabilization tech-
niques, like e.g. Convection and Diffusion, Heat
Transfer or Chemical engineering modules, and
to modify in appropriate way the implementation
of the model for HSCs movement using (one or
more of) them.

5. Concluding Remarks

The numerical results discussed in section 4. rep-
resent our first experience with COMSOL Mul-
tiphysics for the numerical solution of a chemo-
taxis system of PDEs. Our ongoing work is fo-
cused on the question ”How to modify the model



s(t, x) andb(t, x)

a(t, x) andb(t, x)

Figure 5: Model data – solutionT = 100, GM-
RES/ILU.

implementation and which modules should be
included to overcome the numerical instabilities
problem?” Afterwards, more numerical tests and
detailed analysis of the results as well as of the
properties of the solvers are to be performed in
order to answer questions like ”Which solver is
better for the considered problem?”, ”How close
are the obtained solutions to the real behaviour
of the populations?” Comparison with other
solvers and positivity preserving schemes is also
advisable before we start with the analysis of is-
sues like ”What are the ranges for parameters
where the model works or fails?”, ”How the ve-
locity of HSCs depends on different parameters
of the model?”, ”How does the type ofχ influ-
ences the solution?” arisen in a discussion with
Dr. M. Neuss-Radu – one of the authors of the

HSCs migration model. Further steps towards
calibration of this model include sensitivity anal-
ysis (with the related tool of COMSOL Multi-
physics) and parameter estimation with the help
of experimental/patient specific clinical data.
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