Coupled Electromagnetic-Thermal Model of a Superconducting Motor

Lukasz Tomkow1,a, Vicente Climente-Alarcon1, Anis Smara1, Bartek A. Glowacki1,2,3

1Applied Superconductivity and Cryoscience Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, United Kingdom
2Institute of Power Engineering, Warsaw 02-981, Poland
3Epoch Wires Ltd. Cambridge CB22 6SA, UK
ae-mail: ltt27@cam.ac.uk

COMSOL Conference 2019
Cambridge
Contents

1. Introduction
2. Methods
3. Results
4. Conclusions
Contents

1. Introduction
2. Methods
3. Results
4. Conclusions
Background

- Construction of a fully superconducting motor
- Rotor with magnetised stacks of HTS tape
- Cooling with hydrogen to 20K
- Demagnetisation issues and need for magnetic shielding
- Anisotropic heat transfer properties
Introduction

Goals
- Design of efficient stacks to serve as trapped field magnets in the rotor
- Find the maximum magnetic flux that can be trapped
- Tackle the issue of demagnetisation to prolong the operation time of the motor
- Optimise heat removal to maintain temperature below critical

Methods
- Coupled thermo-electromagnetic model
- Application of A-formulation and H-formulation in a single model to decrease time of computations
- Consideration of material parameters
Contents

1 Introduction

2 Methods

3 Results

4 Conclusions
Geometry of the model
Coupled Electromagnetic-Thermal Model of a Superconducting Motor

Methods

Mesh
Coupled Electromagnetic-Thermal Model of a Superconducting Motor

Methods

Numerical method

H-formulation
\[
\frac{\partial H_x}{\partial t} + \frac{\partial H_y}{\partial t} + \frac{\partial}{\partial x} (E_z(J_z)) - \frac{\partial}{\partial y} (E_z(J_z)) = 0
\]

Electric field
\[
E_z = \begin{cases}
E_0 \left(\frac{|J_z|}{J_c} \right)^n \frac{J_z}{|J_z|} & \text{when } |J_z| \geq J_c \\
0 & \text{when } |J_z| < J_c
\end{cases}
\]

Current density
\[
J_z = \frac{\partial H_x}{\partial y} - \frac{\partial H_y}{\partial x}
\]

- H - magnetic field
- J - current density
- J_c - critical current density
- n - exponent of power law, assumed as 31 [1]
- x, y, z - geometrical axes
- E_0 - electric field threshold

\footnote{Kvitkovic et al., 2018}
Critical current density
Contents

1 Introduction
2 Methods
3 Results
4 Conclusions
Coupled Electromagnetic-Thermal Model of a Superconducting Motor

Results

Magnetisation

Magnetic induction in T and magnetic vector potential in Wb/m

Results

Current density

Current density in A/m²
Operation

Voltage response of a coil in V
Anisotropic heat transfer in optimised configuration

Temperature and heat transfer direction in a section of a conduction-cooled rotor
Contents

1 Introduction

2 Methods

3 Results

4 Conclusions
Conclusions

- The shape of stacks is selected and they will be manufactured soon.
- Further thermal analysis will be performed to find optimal mounting method.
- Research on protection against demagnetisation is ongoing.
- The results from the operation of a demonstrator motor will be available in 1Q 2020.
Acknowledgements

This research is financially supported partially by the European Union’s Horizon 2020 research innovation programme under grant agreement No. 7231119 (ASuMED "Advanced Superconducting Motor Experimental Demonstrator") and also by EPSRC grant No. EP/P000738/1 entitled "Development of superconducting composite permanent magnets for synchronous motors: an enabling technology for future electric aircraft".
Conclusions

- The shape of stacks is selected and they will be manufactured soon
- Further thermal analysis will be performed to find optimal mounting method
- Research on protection against demagnetisation is ongoing
- The results from the operation of a demonstrator motor will be available in 1Q 2020