

1/12

Modeling of PZT Slab for Generating Symmetric and Uniform Axial Strain Distribution

Joseph Abraham Thomas¹, Nithin Jose², T V Praveen², R Rajesh² 1. Model Engineering College Thrikkakara, Kochi Kerala India 2. Naval Physical and Oceanographic Laboratory (NPOL) DRDO, Kochi Kerala India

COMSOL CONFERENCE 2019

BANGALORE

- Requirement for high frequency optical modulation
- PZT slab based fiber laser modulation
- Modelling & simulation of PZT8 & PZT 5H slabs
- Analysis of frequency response & axial strain distribution
- Investigation of constraints on Optical modulation
- Modelling & simulation results

- Interferometric fiber optic sensing demands high frequency optical modulation
- Optical Source Low noise & narrow line width FLs
- Generation of mechanical strain on piezoelectric slab with electric potential
- Mounting the active region of FLs on optimum & uniform strain region on PZT slab
- Optical modulation compatible with the generated axial strain on PZT slab

Fiber laser mounted on PZT slab

Modulation requirements for interferometric fiber optic sensing :-

- Optimum
- Symmetric
- Uniform
- High frequency

Factors affecting Axial strain on PZT slab:-

- Modulation Amplitude
- Modulation Frequency
- PZT material composition
- PZT slab dimension
- Region on slab for mounting the fiber laser

Modeling & Simulation

- COMSOL Multiphysics software version 5.2 for FEM
 Modeled and simulated PZT8 & PZT5H slabs
 Modules used
 - Structural mechanics module
 - AC/DC module
 - Interfaces
 - Piezoelectric devices
 - Solid mechanics
 - Electrostatics

Electric field to PZT slab

Basic computation Equations:-

- For solid mechanics domain $-\rho\omega^2 u = \nabla . S + F_V e^{i\phi}$
- For AC/DC domain
 - $\nabla . D = \rho_v$
 - $\mathbf{E} = -\mathbf{V}\mathbf{V}$

Objectives of modeling & simulation:-

- Design the PZT slab for modulation requirements
- Model the PZT slab with resonance free state at required high frequency region
- Analyze the frequency response of PZT slabs
- Simulate & analyze the effect of Electric field on axial strain of PZT slabs
- Modulation analyze with signal of 1 V amplitude
- Analyze the significance of PZT material composition & dimensions for axial strain of PZT

Simulation Results

1. PZT8 slab

Dimensions of PZT8 slab (mm)				
Length	Breadth	Height		
100	50	5		

Material properties	Symbols	PZT 8
Relative dielectric	K ₃₃ T	1205
constant	55	
Piezo electric coupling	k.	.5
factor	р	
Chauge constant	d ₃₃	215
Charge constant	d ₃₃ d ₃₁	-126
Strain constant	S ₃₃	13.5
Density	0	7 4 5

Significant material properties for mechanical strain generation

Frequency response of PZT8 slab

Simulation Results of PZT8 slab Contd....

NPÔL

Axial strain response at different modulation frequencies

Simulation Results of PZT8 slab Contd....

Modulation signal @ 50 kHz frequency

3 Dimensional Axial strain distribution @ 50 kHz modulation

Simulation Results of PZT8 slab Contd....

Axial strain response at different axes @ 50 kHz modulation

Generated multiple resonant states

- 50 kHz region free from resonance
- Generated 87 nε at center axis along the length & width of slab
- Obtained non-uniform higher strain at resonant state (960 nε @ 53 kHz)
- Generated more uniform & symmetric strain at center axis along the width of slab

2. PZT5H slab

Dimensions of PZT5H slab (mm)				
Length	Breadth	Height		
70	18	5		

Material properties	Symbols	PZT5H
Relative dielectric	K ₂₂ ^T	1725
constant	33	
Piezo electric	k	6
coupling factor	Кр	.0
Change constant	d ₃₃	360
Charge constant	d ₃₁	-300
Strain constant	S ₃₃	20.7
Density	0	7.6

Significant material properties for mechanical strain generation

Frequency response of PZT5H slab

Naval Physical & Oceanographic Laboratory, Kochi.

10/12

Simulation Results of PZT5H slab Contd....

Axial strain response of PZT5H slab @ 50 kHz modulation

Conclusion

- Modeled and simulated PZT slabs for optimum high frequency optical modulation in FLs
- Realized a resonant free state at 50kHz region of PZT slab
- Analyzed the significance of PZT material composition & dimensions in mechanical strain generation with PZT8 & PZT5H
- Generated optical modulation in DFB-FL with PZT8 slab and verified the simulation results.
- Realized uniform & higher axial strain with a lower amplitude modulation signal- in PZT5H slab
- Simulated symmetric & uniform axial strain distribution at the center region of PZT slabs for mounting FLs for modulation

12/12

THANK YOU