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Introduction 

 
The impact of surface roughness on the optical transmission of 

light pipes has been addressed using a geometrical optics 

approximation (GOA) [1]; however, a basic estimate for 

diffractive losses remains to be included. Using COMSOL®, 

we compare 2D Wave Optic Simulations for diffractive 

efficiencies to those predicted by non-paraxial scalar theory 

[2] for sinusoidal phase gratings. 

 

Glass light pipes have been fabricated using femtosecond laser 

irradiation followed by chemical etching [3].  After etching, the 

surfaces are rough and may require subsequent polishing to 

achieve optical quality smoothness.  The degree of smoothness 

will impact the transmission, so simulation work aims to 

understand the tradeoffs in surface roughness parameters and 

induced loss.  The distribution of ray angles changes upon 

intersection with the scattering sidewall surface.  The sidewall 

scattering loss results from incidence angles that are smaller 

than the critical angle.   

 

Simulations using the GOA yield the same transmission versus 

ray incidence angle for random surfaces with different RMS 

heights (’s) but the same root-mean-square (RMS) slope 

(mrms=0.01) as shown in Fig. 1.  Different surface RMS slopes 

(mrms=0.02) change the transmission curve.  The GOA does not 

predict any significant wavelength dependence.  Thus, a model 

including diffractive effects would be helpful for analyzing 

experimental results. 

 

 
 

Figure 1. A GOA simulation for sidewall scattering loss for a 1mm2 by 

50mm-long fused silica light pipe in air [4]. RMS slope=m. 
 

While rough surfaces can be simulated and the diffraction 

precisely modeled, full vectorial electromagnetic solutions are 

time consuming and solutions are needed for a large ensemble 

of surfaces.  Thus, our goal is to modify the GOA simulation to 

include diffractive effects on each ray intersection with the 

(core-to-cladding) interface.  A simple transfer function 

approach for incident to reflected ray angles is desired.  By 

starting with a sinusoidal phase grating, we can extend the result 

by Fourier series expansions to address random surface 

variations. 

 

A Sinusoidal Phase Grating - Analytic Solution 
 

Harvey and Pfisterer [2] describe a nonparaxial scalar 

diffraction theory with an analytic formula for the case of a 

sinusoidal phase grating.  The nonparaxial scalar solution has 

been used more generally for random surfaces where close 

comparisons have been established to full vectoral 

electromagnetic TE simulations.   The grating equation for the 

mth-order is given as follows [2]: 

 

𝛽𝑚 + 𝛽𝑖 =
𝑚

𝑑̂
 

 

where 𝛽𝑖 = 𝑠𝑖𝑛𝜃𝑖   𝑎𝑛𝑑  𝛽𝑚 = sin θm.  The normalized peak-

to-valley grating height and period are given by ℎ̂ =
ℎ

𝜆
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𝜆
, respectively.  The efficiency for each order is 

calculated using mth-order Bessel functions of the first kind 

and normalizing to the sum over all propagating orders as 

follows: 
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where the Bessel function argument is given by  

 
a

2
= 𝜋ℎ̂ [cos(𝜃𝑖) + cos (𝜃𝑚)]. 

 

For a given set of grating parameters and wavelength, the 

efficiency 𝜂𝑚 into each order is quickly calculated in 

MATLAB®. 

 

As previously noted, an important metric for estimating 

sidewall scattering loss using the GOA is the RMS surface 

slope [1]. The RMS slope can be calculated for random and 

deterministic surfaces.  For a sinusoid with period d and peak-

to-valley height h, the RMS slope is denoted by [5] 

 

𝑚𝑠 =
𝜋

√2

 ℎ̂

𝑑̂
 

 

The maximum slope is √2 times the RMS slope.  For 

calibration, relatively smooth surfaces have RMS slopes of 

0.01 or less.  Light pipe scattering losses increase as the RMS 

slope increases under the GOA.  The following simulations 

aim to evaluate whether this metric is sufficient to capture 

diffractive effects or whether other parameters are required. 

 

 

 

 



TE Simulation Results  

 
A single core-to-cladding interface is simulated, with  n1=1.46 

and n2=1.0, using the Wave Optics Module (2D simulation, 

TE-polarization) to calculate the diffraction order efficiencies 

for a range of parameters.  The critical angle is 𝜃𝑐 = 43.23°.  

Two examples are shown in Fig. 2 for a free space wavelength 

of 550nm, ms=0.044, and ℎ̂=0.106 and 0.212.  Clearly, the 

reflected ray distribution is quite different for each ℎ̂ value, 

with more specular reflection R(0) for the lower value.  

Periodic boundaries and ports are used with the wave incident 

from the silica to air interface. 

 
 

 

 
 

Figure 2. COMSOL® Wave optics TE simulation for sinusoidal 2D 

surface at a glass-air interface, showing the 0
th
, +/-1 and -2nd diffraction 

orders for reflection.  The total reflectance R and transmission T are also 
plotted. 

 

Non-paraxial scalar calculations are shown in Fig. 3a for ℎ̂ =

0.318 and Fig. 3b for ℎ̂ =0.212.  Both plots use the same 

slope ms=0.044 and free space wavelength of 550nm.  Fresnel 

reflection losses are not included in Fig. 3, just the efficiency 

into each diffraction order.  The sign convention for plus and 

minus orders is different between the COMSOL® diffraction 

order ports and the equations from [2]. Using the sign 

convention from [2], the cutoff for the m=-1 order is given by 

 

𝑠𝑖𝑛 𝜃𝑖|−1𝑐𝑢𝑡𝑜𝑓𝑓 = 1 − 1/𝑑̂ 

 

For angles larger than this cutoff, only the +1 and 0th 

orders are diffracted.  The cutoffs are 69.6° and 65° for 

Fig. 3a and b, respectively.  

 

 

 
Figure 3. Nonparaxial scalar diffraction efficiency 

calculations (hh= ℎ̂, dh= 𝑑̂), up to 3rd order, neglecting Fresnel 

reflection losses. 

 
In Fig. 4, the efficiency for each order was multiplied by a TE 

Fresnel reflection term given by √𝑅(𝜃0)𝑅(𝜃𝑚).  While good 

agreement was obtained for the other orders, the 0th-order 

predicted by the Wave Optics simulations were higher than the 

scalar theory calculation.  An empirical normalization factor 

was found for the 0th-order, as follows: 
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This empirical “normalization” for the 0th-order, and standard 

normalization [2] for the other orders, provided good 

agreement between the Wave Optics and scalar theory results 

for each diffraction order as well as the total reflectance, as 

seen in Fig. 4.  The empirically- determined normalization 

h=40nm  
d=2um 

ℎ̂ =0.106 

𝑑̂ =5.303 

 

    (a) 

h=80nm  
d=4um 

ℎ̂ =0.212 

𝑑̂ =10.61 

 

    (b) 

(a) 

(b) 



factor is the geometric mean of 𝑅(𝜃𝑚) and √𝑅(𝜃𝑚).  Note 

that 𝑅(𝜃𝑚) = 1 for m=0 and -1, and is less than unity for 

m=+1 in the simulation results shown. 

 

An example of calculations for the total reflectance due to 

diffractive losses using the nonparaxial scalar approach is 

shown in Fig. 5 for h=80nm and d=4m at three different 

wavelengths.  While the loss is much higher for incidence 

angles near 𝜃𝑐 for the shortest free-space wavelength =367 

nm, it is higher at 550 nm and 825 nm at various larger 

incident angles, 𝜃𝑖.  Thus, having a quick calculation tool is 

helpful in estimating the total reflectance versus incidence 

angle for various combinations of slope and ℎ̂.   

 

 

 
Figure 4. Comparison of Wave Optics and nonparaxial scalar 

TE diffraction estimations.  Subscripts: c=COMSOL®  Wave 

Optics, m=MATLAB® (nonparaxial scalar theory). 

 

TM Simulation Results  
 

An example TM response compared to the TE response from a 

2D Wave Optics simulation is shown in Fig. 6 for the grating 

properties of d=4m and h=80nm at a free space wavelength 

of 550nm.  The main difference is a decrease in the +1 order 

and increase in the 0th order until the +1 order meets the total 

internal reflection (TIR) condition. 

 

When the TM Fresnel reflectivity and the same empirical 

normalization procedure as previously noted is used with the 

scalar theory, a reasonably good agreement with the Wave 

Optics simulations is obtained, as shown in Fig. 7 for free 

space wavelength 550nm and 825nm.  The transition regions, 

where one order becomes TIR or cuts off, do not have as good 

of an overlap as in the TE case. 

   

 
Figure 5.  Reflection losses (i.e. when  |𝜃𝑚| < 𝜃𝑐) for 367nm 

(red), 550nm (blue) and 825nm (black) assuming d=4m and 

h=80nm. 

 

 
Figure 6.  Comparison of TE and TM diffracted efficiencies 

using the COMSOL® Wave Optics module. 

 

Conclusions 
 

Insight into the diffractive scattering losses, and thus 

wavelength dependence, at a dielectric interface is gained by 

simulating a sinusoidal phase grating.  The full vectorial 

electromagnetic simulations compared well to the nonparaxial 

scalar diffraction calculations using an empirically determined 

normalization of the 0th-order.   

 

Unlike the GOA, both the RMS slope and the normalized 

height ℎ̂ are required to calculate the efficiencies into each 

diffraction order.  Based on the nonparaxial scalar theory, any 



combination of wavelength and d that give the same slope and 

ℎ̂ will have the same diffraction efficiencies for its orders.   

 

The nonparaxial scalar diffraction theory provides a simple 

approach for estimating the scattering angle distribution for 

light pipe sidewall scattering loss calculations.  In future 

analyses, a Fourier series of grating amplitudes and phases 

will be used to model a desired (e.g. rough) surface and the 

sidewall scattering losses predicted for a large number of ray 

intersections with the core-to-cladding interface to model a 

realistic light pipe.  

 

 

 
Figure 7.  Comparison of TM diffracted efficiencies from the 

Wave Optics module and the scalar theory.  Subscripts: 

c=COMSOL®, m=MATLAB®. 
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