科技论文和演示页面包括了 COMSOL 全球用户年会上所有的用户演示文稿。这些演示文稿介绍了 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计,研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。您可以使用“快速搜索”来查找与您研究领域相关的演示文稿。

Dynamic Study of Field and Current Distribution in Multifilamentary YBCO Thin Films

F. Grilli[1], A. Lucarelli[2], G. Lüpke[2], T. Haugan[3], and P. Barnes[3]

[1]Ecole Polytechnique de Montréal, Montréal, QC, Canada
[2]College of William and Mary, Williamsburg, VA, USA
[3]Air Force Research Laboratory

We have developed a model for computing current and field distributions in multifilamentary superconducting thin films subjected to the simultaneous ...

Multiple Solutions in the Theory of DC Glow Discharges

P. Almeida, and M. Benilov
Departamento de Física. Universidade da Madeira, Portugal

It was suggested long ago that a theoretical model of a near-cathode region in a DC glow discharge admits multiple steady-state solutions describing different modes of currrent transfer. Even the most simple self-consistent models should admit such multiple solutions. In the present work, these solutions have been calculated for the first time with COMSOL Multiphysics.

Field-Circuit Coupling Applied to Inductive Fault Current Limiters

D. Lahaye[1], D. Cvoric[2], S. de Haan[2], and J. Ferreira[2]
[1]Delft Institute of Applied Mathematics, Department of Electrical Engineering, Mathematics and Computer Sciences, TU Delft, The Netherlands
[2]Electrical Power Processing Unit Department of Electrical Engineering, Mathematics and Computer Sciences, TU Delft, The Netherlands

Fault Current Limiters (FCLs) are expected to play an important role in the protection of future power systems due to the rising levels of the short ...

Numerical Study of a DC Electromagnetic Liquid Metal Pump: Limits of the Model

N. Kandev[1]
[1]Institut de recherche d'Hydro-Québec, Shawinigan, QC, Canada

This work presents the results of a 3D numerical magneto-hydrodynamic (MHD) simulation of an electromagnetic DC pump for liquid metal using a ...

Investigating Magnetic and Electric Fields Couplings for 3D Models in Harmonic and Transient States

O. Maloberti [1], O. Mansour [1]
[1] ESIEE Amiens, Amiens, France

At present, no 3D transient magnetic and electric fields formulation with strong eddy currents and high electric fields is available in the physical ...

Predicting Critical Current as a Function of Magnetic Field in High-Temperature Superconductors

J. Doody [1], P. Michael [1], R. Vieria [1], W. Beck [1], L. Zhou [1], J. Irby [1],
[1] Massachusetts Institute of Technology - Plasma Science and Fusion Center, Cambridge, MA, USA

REBCO tapes belong to a class of high-temperature superconductors (HTS) that can be superconducting at liquid nitrogen temperatures (77K) as opposed to ...

Nonlinear Ferrohydrodynamics of Magnetic Fluids

Markus Zahn
Professor,
Massachusetts Institute of Technology, Cambridge, MA, USA

Markus Zahn received all his education at MIT, was a professor in the Department of Electrical Engineering at the University of Florida, Gainesville ...

Accuracy Assessment of The Linear Induction Motor Performance using Adaptive FEM

M. Manna[1], S. Marwaha[1], and C. Vasudeva[1]
[1] Department of Electrical & Instrumentation Engineering, Sant Longowal Institute of Engineering and Technology , Longowal (Deemed University), Punjab, India

The majority of electrical machines are designed to produce the rotary motion, there by exploiting the blessing of circularity which man has enjoyed ...

Numerical Modeling of a MEMS Sensor with Planar Coil for Magnetic Flux Density Measurements

J. Golebiowski[1], S. Milcarz[1]
[1] Department of Semiconductor and Optoelectronics Devices, Technical University of Lodz, Lodz, Poland

The silicon cantilever with the planar coil was applied to the magnetic flux density measurements. The influence of shape and dimensions of planar coil ...

Coupling Picosecond Terahertz Pulses to a Scanning Tunneling Microscope

P. H. Nguyen [1], C. Rathje [2], G. J. Hornig [1], V. Jelic [1], C. Ropers [2], F. A. Hegmann [1],
[1] University of Alberta, Edmonton, AB, Canada
[2] 4th Physical Institute, University of Göttingen, Göttingen, Germany

Probing ultrafast processes over subpicosecond and picosecond time scales provides fundamental insight into the nature of materials. We have ...