科技论文和演示页面包括了 COMSOL 全球用户年会上所有的用户演示文稿。这些演示文稿介绍了 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计,研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。您可以使用“快速搜索”来查找与您研究领域相关的演示文稿。

Current Density Distribution and Material Removal Behavior on the Graphite/Iron-matrix Interface in Cast Iron Under Pulse Electrochemical Machining Conditions

O. Weber[1], R. Kollmannsperger[2], D. Bähre[2]
[1]Center for Mechatronics and Automatization, Saarbrücken, Germany
[2]Institute of Production Engineering, Saarland University, Saarbrücken, Germany

The Pulse Electrochemical Machining is especially suitable for the precise production of complex geometric contours with high precision and high ...

Charge-Discharge Studies of Lithium Iron Phosphate Batteries

A. K. R. Paul [1], R. D. Pal [2],
[1] CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
[2] Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India

A lithium-ion battery comprises of two intercalating electrodes separated by a membrane, sandwiched between aluminum and copper current collecting ...

Computational Optimization of Battery Grid for Efficiency and Performance Improvement

V. Panneerselvam [1], R. C. Thiagarajan [1]
[1] ATOA Scientific Technologies Pvt Ltd, Bengaluru, India

Battery grids are critical system used in automobile, renewable energy, medical devices and mobile phones. Research efforts are directed to increase ...

Impact of Electrode Surface/Volume Ratio on Li-ion Battery Performance - new

S. Das[1], J. Li[2], R. Hui[1]
[1]University of Kansas, Lawrence, KS, USA
[2]Kansas State University, Manhattan, KS, USA

The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the ...

Heat Pipe Assisted Thermal Management of an HT PEMFC Stack

E. Firat[1], G. Bandlamudi[1], M. Crisogianni[1], P. Beckhaus[1], A. Heinzel[1]
[1]Centre for Fuel Cell Technology (ZBT), Duisburg,NRW, Germany

Heat management is crucial for the satisfactory operation of HT-PEM (High temperature polymer-electrolyte-membrane) fuel cells. Current work ...

Mathematical Modeling of a Lithium Ion Battery

R. E. White[1], and Long Cai[2]
[1]R.E. White & Associates LLC, Columbia, South Carolina, USA
[2]Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA

The existing lithium ion battery model in COMSOL’s Multiphysics  software is extended to include the thermal effects. The thermal behavior ...

Temperature Propagation during Cell Stacking Processes for Lithium-Ion Cells

G. Liebig [1], P. Bohn [2], L. Komsiyska [1], S. Vasić [1]
[1] NEXT ENERGY EWE-Forschungszentrum, Oldenburg, Germany
[2] AUDI AG, Ingolstadt, Germany

A thermo-physical 3D model of a commercial Li-ion battery was developed and validated. Visualization of the temperature distributions inside a Li-ion ...

Primary Current Distribution Model for Electrochemical Etching of Silicon through a Circular Opening

A. Ivanov [1], U. Mescheder [1],
[1] Hochschule Furtwangen University, Furtwangen im Schwarzwald, Germany

Primary current distribution model for anodization of low-doped p-type silicon through a circular opening in frontside insulating mask is developed. ...

Studying PEM Fuel Cells using Equation Based Simulation

J. Blackburn [1], N. McCartney [1],
[1] National Physical Laboratory, London, UK

We present computer simulation results for PEM fuel cells using COMSOL Multiphysics® software. We have developed novel PDE equations at NPL from first ...

Classical Models of the Interface Between an Electrode and an Electrolyte

E. Gongadze[1], S. Petersen[1], U. Beck[2], and U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Institute of Electronic Appliances and Circuits, University of Rostock,
Rostock, Germany

The Electrical Double Layer (EDL) plays a major role in understanding the interface between a charged surface (e.g. an implant) and ionic liquids (e.g. ...