科技论文和演示页面包括了 COMSOL 全球用户年会上所有的用户演示文稿。这些演示文稿介绍了 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计,研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。您可以使用“快速搜索”来查找与您研究领域相关的演示文稿。

Models for Simulation Based Selection of 3D Multilayered Graphene Biosensors

E. Lacatus [1], G. C. Alecu [1], A. Tudor [1],
[1] Politehnica University of Bucharest, București, Romania

At the forefront of a new generation of sensors graphene and graphene composite materials are intensively studied for medical and biosensing ...

Heat and Mass Transfer in Convective Drying Processes

C. Gavrila[1], A. Ghiaus[1], and I. Gruia[2]
[1]Technical University of Civil Engineering Bucharest, Faculty of Building Services, Bucharest, Romania
[2]University of Bucharest, Faculty of Physics, Bucharest, Romania

A dynamic mathematical model, based on physical and transport properties and mass and energy balances, was developed for the simulation of unsteady ...

Coupled PDEs with Initial Solution from Data in COMSOL Multiphysics®

M. K. Gobbert[1], X. Huang[1], S. Khuvis[1], S. Askarian[1], B. E. Peercy[1]
[1]University of Maryland - Baltimore County, Baltimore, MD, USA

This paper presents information on techniques needed in COMSOL Multiphysics® to enable computational studies of coupled systems of PDEs for time ...

A Practical Method to Model Complex Three-Dimensional Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL Multiphysics®

J. Cepeda[1], S. Birla[2], J. Subbiah[2], H. Thippareddi[1]
[1]Department of Food Science & Technology, University of Nebraska, Lincoln, NE, USA
[2]Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA

Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. ...

A Non-Newtonian Model for Blood Flow behind a Flow Diverting Stent

G. Mach [1], C. Sherif [2], U. Windberger [3], A. Gruber [3],
[1] Vienna University of Technology, Cerebrovascular Research Group Vienna, Vienna, Austria
[2] Hospital Rudolfstiftung, Cerebrovascular Research Group Vienna, Vienna, Austria
[3] Medical University Vienna, Cerebrovascular Research Group Vienna, Vienna, Austria

Usually, when calculating the blood flow in cerebral arteries and intracranial aneurysms, blood is modeled as a Newtonian fluid, neglecting its shear ...

Modeling of Hydrogel-Based Controlled Drug Delivery System for Breast Cancer Treatment - new

K. Cluff[1], L. Saeednia[2], H. Mehraein [1], R. Asmatulu[2]
[1]Department of Bioengineering, Wichita State University, Wichita, KS, USA
[2]Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA

Polymeric hydrogel is a promising class of drug delivery systems with the controlled release behavior in the body. In-situ forming hydrogels can be ...

Analysis Of Particle Trajectories For Magnetic Drug Targeting

A. Heidsieck, and B. Gleich
Zentralinstitut für Medizintechnik, TU München, München, Germany

The technique of magnetic drug targeting binds genetic material or drugs to superparamagnetic nanoparticles and accumulates them via an external ...

Numerical Study on Mechanical Properties of Stents with Different Materials during Stent Deployment with Balloon Expansion.

P. Ghosh[1], K. DasGupta[1], D. Nag[2], and A. Chanda[1]
[1]School of Bio Science & Engineering, Jadavpur University, Kolkata, West Bengal, India
[2]Mechanical Engineering Department, Jadavpur University, Kolkata, West Bengal, India

The main reason for stent implantation is to provide mechanical support to the arterial wall. So it is important to consider the different mechanical ...

Flexible Numerical Platform for Electrical Impedance Tomography

A. Fouchard [1], S. Bonnet [1], L. Hervé [1], O. David [2],
[1] University Grenoble Alpes, CEA, LETI, MINATEC Campus, Grenoble, France
[2] Univesité Joseph Fourier, Grenoble Institute of Neuroscience, La Tronche, France

An implementation of the Electrical Impedance Tomography (EIT) forward problem in a generalist FEM package is presented. It fulfils the complete ...

MEMS Based Sensor for Blood Group Investigation

M. Kaushik [1], S. Katti [1], V. Saradesai [1], P. Naragund [1], P. Vidhyashree [1], A. K. V. Nandi [1]
[1] B.V. Bhoomaraddi College of Engineering and Technology, Hubli, India

This article describes the design of MEMS based cantilever structure intended for determination of blood group and it is compared with manual method. ...

First
Previous
1–10 of 389