科技论文和演示页面包括了 COMSOL 全球用户年会上所有的用户演示文稿。这些演示文稿介绍了 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计,研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。您可以使用“快速搜索”来查找与您研究领域相关的演示文稿。

Modeling of Silicon Piezoresistive Pressure Sensor: Application to Prevent Some Diabetes Complications

F. Kerrour[1], A. Beddiaf[1], M. Benabbas-Marir[1]
[1]MODerNa Laboratory, University Mentouri, Constantine, Algeria

Several analytical solutions describing the mechanical behavior of a silicon micro membrane deflection, perfectly embedded and subjected to a uniform ...

Modeling an Enzyme Based Electrochemical Blood Glucose Sensor with COMSOL Multiphysics

S. Mackintosh[1], J. Rodgers[1], S.P. Blythe[1]
[1]Lifescan Scotland, Inverness, Scotland

This paper describes the modeling of a blood glucose sensor using COMSOL Multiphysics. Chemical species interaction and diffusion, coupled with electrochemical oxidation of multiple blood species produced a powerful working model used in developing and refining a range of blood glucose sensors for the commercial market.

Multiphysics Modeling of Swelling Gels

A. Lucantonio[1], P. Nardinocchi[1], L. Teresi[2]
[1]Università degli Studi La Sapienza, Roma, Italy
[2]LaMS - Modelling & Simulation Lab, Università degli Studi Roma Tre, Roma, Italy

Polymer gels belong to the realm of soft active materials as they are capable of responding to a non-mechanical stimulus – the permeation of a ...

A Mathematical Tool for Studying Drug Delivery to the Eye in Case of Glaucoma

P. Silva[1], J.A. Ferreira[2], P. de Oliveira[2]
[1]Coimbra Institute of Engineering, CMUC, Coimbra, Portugal
[2]Department of Mathematics University of Coimbra, CMUC, Coimbra, Portugal

The aim of the poster is to present a coupled 2D mathematical model to predict the evolution of drug concentration - in the cornea and in the anterior ...

Assessment of Anterior Spinal Artery Blood Flow following Spinal Cord Injury

M. Alshareef[1], A. Alshareef[2], V. Krishna[3], M. Kindy[3], T. Shazly[4]
[1]College of Medicine, Medical University of South Carolina, Charleston, SC, USA
[2]Department of Biomedical Engineering, Duke University, Durham, NC, USA
[3]Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
[4]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

The incidence of spinal cord injury (SCI) in the US is approximately 12,000 individuals annually, due to various forms of trauma and disease. ...

Simulation of Radiation Dose Response in Phantom for CT

H. Chen-Mayer[1], R.E. Tosh[1]
[1]National Institute of Standards and Technology, Gaithersburg, MD, USA

The radiation dose produced by an x-ray CT scanner to the patient is conventionally referenced to measurements performed by an ionization chamber in a ...

Singlet Oxygen Modeling of BPD Mediated-PDT Using COMSOL

T.C. Zhu[1], B. Liu[1], X. Liang[1]
[1]University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during photodynamic therapy (PDT). A previously developed model that incorporates the diffusion ...

A Study on Nutrient Mass Transport through Porous Channeled Flat Sheet Membrane and Prediction of Maximum Scaffold Thickness for Viable Cell Culture (In-vitro) by 3D Modeling for Tissue Engineering Application

N. M. S. Bettahalli[1], B. J. Papenburg [2], D. S. Stamatialis [2], M. Wessling [3]
[1]University of Twente, Enschede, The Netherlands & BMS College of Engineering, Bangalore, India
[2]University of Twente, Enschede, The Netherlands
[3]RWTH Aachen University

Tissue engineering (TE) is a multidisciplinary field involving principles of engineering and life sciences to improve the health and quality of life by ...

Design of Microneedle Array for Biomedicine

N. Mane[1], A. Gaikwad[1]
[1]Department of Instrumentation, Cummins College of Engineering, Pune, Maharashtra, India

Micro electro-mechanical system (MEMS) is rapidly growing area of interest for a broad spectrum of applications. One particularly fast-growing area is ...

Design of Microfluidic Device for Cellular Experiment Under Controlled Oxygen Tension

K. Funamoto[1], I.K. Zervantonakis[2], R.D. Kamm[2]
[1]Tohoku University, Sendai City, Miyagi, Japan
[2]Massachusetts Institute of Technology

Numerical simulation of oxygen tension was performed to develop a microfluidic device for three-dimensional real-time observation of cellular response under hypoxia. The optimal experimental condition was obtained through investigations of effects of parameters, such as device thickness and flow rates of media and gas, on oxygen tension.