科技论文和演示页面包括了 COMSOL 全球用户年会上所有的用户演示文稿。这些演示文稿介绍了 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计,研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。您可以使用“快速搜索”来查找与您研究领域相关的演示文稿。

Entropic Evaluation of Dean Flow Micromixers

P. S. Fodor[1], M. Kaufman[1]
[1]Cleveland State University, Cleveland, OH, USA

In this work we investigate computationally the use of spiral channels at Reynolds numbers from 25 to 900 as a mixing structure (Figure 1) using COMSOL ...

Investigating the Performance of Mechanically Ventilated Double-Skin Facades with Solar Control Devices in the Main Cavity - new

C. G. Galante[1]
[1]Newtecnic Ltd, London, England, UK

The use of ventilated facades may reduce the cooling and heating energy demands of the building. Double-skin facades (DSFs) belong to the wider group ...

Modeling of Stockton University Geothermal System Using COMSOL Multiphysics® and the Subsurface Flow Module

M. Sharobeam [1], S. Pal [1], G. Villanuna [1],
[1] School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ, USA

Stockton University has one of the largest closed loop geothermal system in North America. It provides heating and cooling for the university academic ...

Friction Factor for Perforated Pipes

D. Neihguk [1], M. L. Munjal [2], A. Prasad [1],
[1] Mahindra & Mahindra Ltd, Chennai, India
[2] Indian Institute of Science, Bangalore, India

Perforated pipes are extensively used to control exhaust noise in automobiles [1-4]. The energy loss associated with the perforations leads to back ...

Design of Cooling System for Electronic Devices Using Impinging Jets

P. Lin[1], C. Chang[2], H. Huang[3], and B. Zheng[4]
[1]Mechanical and Aerospace Eng., Rutgers, The State University of New Jersey, Piscataway, NJ
[2]FTR Systems (Shanghai) Inc., Shanghai, China
[3]PolarOnyx, Inc., San Jose, CA
[4]School of Mechatronics Eng., University of Electronic Science and Technology of China, Chengdu, China

The heat sink designs using impinging liquid jets, which form stagnation flows, feature uniform heat transfer coefficients, and provide thin thermal ...

Numerical Quasi Stationary and Transient Analysis of Annular Linear Electromagnetic Induction Pump

L. Goldsteins[1], L. Buligins[2], Y. Fautrelle[3], C. Biscarrat[1], S. Vitry[1]
[1]CEA Cadarache, Saint Paul lez Durance, France
[2]University of Latvia, Riga, Latvia
[3]Grenoble Institute of Technology, Grenoble, France

In this paper an axisymmetric model of annular linear electromagnetic induction pumps using numerical methods and four approaches (two transient and ...

Magneto-Hydrodynamic Numerical Study of DC Electromagnetic Pump for Liquid Metal

A. Daoud, and N. Kandev
Institut de recherche d'Hydro-Quebec (LTE), Shawinigan, Quebec, Canada

The electromagnetic pumping (EMP) of electrically-conducting fluid is of growing interest for many industrial applications requiring precise flow ...

Numerical Modeling of Sampling Airborne Radioactive Particles Methods from the Stacks of Nuclear Facilities in Compliance with ISO 2889 - new

P. Geraldini[1]
[1]Sogin Spa, Rome, Italy

The main objective of this study is to verify the compliance of an ongoing nuclear facilities stack design with the ISO 2889 requirements, during ...

Control of Real Distributed Parameter Systems Modeled by COMSOL Multiphysics® Software - new

C. Belavý[1], G. Hulkó[1], S. Lipár[1], B. Barbolyas[1]
[1]Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic

In the paper, first a basic concept of the engineering approach for modeling and control of distributed parameter systems (DPS) based on interpretation ...

Modeling a Nozzle in a Borehole - new

E. Holzbecher[1], F. Sun[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

Within a borehole a nozzle can be installed in order to increase the efficiency of fluid injection. The position of the nozzle is located near the ...