科技论文和展示

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

Developments in a Coupled Thermal-Hydraulic-Chemical-Geomechanical Model for Soil and Concrete

S.C. Seetharam[1], D. Jacques[1]
[1]Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB environment to address soil and concrete applications. The mathematical formulations are based on well-established continuum scale models unifying mass conservation, energy conservation, charge conservation, thermodynamic equilibrium and kinetics and ...

Poroelastic Models of Stress Diffusion and Fault Re-Activation in Underground Injection

R. Nopper[1], J. Clark[2], C. Miller[1]
[1]DuPont Company, Wilmington, DE, USA
[2]DuPont Company, Beaumont, TX, USA

Stress and failure in the earth have long been observed to couple to hydrogeology. Poroelastic models, introduced by soil scientists, can account for strong two-way coupling between porous crustal rock formations and their pore fluids. Current efforts to provide new energy resources (water injection in EGS, enhanced oil recovery) and to reduce pollution (CO2 sequestration, deepwell disposal) ...

Poroelasticity Benchmarking for FEM on Analytical Solutions

E. Holzbecher[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

We examine the poroelastics mode, which couples hydraulics and mechanics by some basic benchmarks. For cases with analytical solutions we check the accuracy for changing meshes and calculate the convergence rate.

Numerical Study on the Acoustic Field of a Deviated Borehole with 2.5D Method - new

L. Liu[1], W.J. Lin[1], H.L. Zhang[1]
[1]State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China

In this paper, we use the PDE interface of COMSOL Multiphysics® software to implement the 2.5D frequency wave-number domain method to investigate the wave propagation in a deviated borehole penetrating a transversely isotropic formation. A convolutional perfectly matched layer is realized to eliminate the reflections from the artificial truncation boundary. With this method, we can obtain the ...

Aquifer Physics Modes for Hydrogeological Modeling – an Application of the COMSOL Physics Builder

E. Holzbecher[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

Although there are porous media and subsurface flow modes available in a toolbox of COMSOL Multiphysics®, some common requirements in hydrogeological models can not be easily accessed in the graphical user interface. Most crucially, there is no distinction between confined and unconfined situations for permeable layers, so called aquifers. Using the Physics Builder for such distinctions aquifer ...

COMSOL 2D Simulation of Heavy Oil Recovery by Steam Assisted Gravity Drainage

I. I. Bogdanov, K. El Ganaoui, and A. M. Kamp
Centre Huile Lourde Ouvert et Expérimental (CHLOE), Pau, France

Multiphysics flexibility and computational performance of COMSOL gave us the idea to model SAGD (steam assisted gravity drainage), one of the popular thermal methods of oil recovery. The modeling is far from straightforward and requires solving a system of non-linear PDEs for thermal multiphase flow under conditions of thermodynamic (phase) equilibrium. This paper presents the main results of our ...

Full Coupling of Flow, Thermal and Mechanical Effects in COMSOL Multiphysics® for Simulation of Enhanced Geothermal Reservoirs

D. Sijacic[1], P. Fokker[1]
[1]TNO, Utrecht, The Netherlands

The effective modeling of enhanced geothermal systems (EGS) requires the coupling of geomechanics, fluid flow and thermal processes. An understanding of the complete system with these coupled processes is vital, not just for reservoir stimulation targeted at enhancing reservoir performance, but also for the understanding, prediction and prevention of induced seismicity. Thermal effects however ...

Investigation of Hydraulic Fracture Re-Orientation Effects in Tight Gas Reservoirs

B. Hagemann[1], J. Wegner[1], L. Ganzer[1]
[1]Clausthal University of Technology, Clausthal-Zellerfeld, Germany

In tight gas formations where the low matrix permeability prevents successful and economic production rates, hydraulic fracturing is required to produce a well at economic rates. As production from the well and its initial fracture declines, re-fracturing treatments are required to accelerate recovery. The orientation of the following hydraulic fracture depends on the actual stress-state of the ...

The Use of COMSOL for Integrated Hydrological Modeling

T. Fong, M. Chui, and D. L. Freyberg
Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA

Hydrological processes and components are intrinsically coupled, and thus must often be modeled as an integrated system. Unfortunately, although a few modeling codes are available, integrated hydrological modeling remains a challenge.The objective of this paper is to explore the feasibility of using COMSOL Multiphysics for integrated hydrological modeling; in particular, using the generic ...

Estimation of Hydraulic Conductivity for a Heterogeneous Unsaturated Soil Using Electrical Resistivity and Level-Set Methods - new

T. K. Chou[1], M. Chouteau[1], J. S. Dubé[2]
[1]École Polytechnique de Montréal, Montréal, QC, Canada
[2]École de Technologie Supérieure, Montréal, QC, Canada

The estimation of the soil saturated hydraulic conductivity (Ks) is crucial in understanding water flow and transport of contaminants. There are many hydrological techniques available in determining this parameter (constant head method, in-situ soil analysis, etc...). While these techniques can provide quality data points, they are often limited by sparse data sampling and scale. Therefore ...

Quick Search