科技论文和演示页面包括了 COMSOL 全球用户年会上所有的用户演示文稿。这些演示文稿介绍了 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计,研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。您可以使用“快速搜索”来查找与您研究领域相关的演示文稿。

Implementation of a Modified Anisotropic Creep Model for Clays with Use of the Physics Builder

M. Karlsson [1], J. Yannie [1],
[1] Chalmers University of Technology, Gothenburg, Sweden

In this work a modified anisotropic creep model with structure for soft soils was implemented by using the Physics Builder. The model is validated against boundary value laboratory test such as undrained tri-axial tests and CRS (constant rate of strain) tests. The implemented user-defined MAC-s constitutive model seems to capture many of the important behaviors seen in soft soils.

Developments in a Coupled Thermal-Hydraulic-Chemical-Geomechanical Model for Soil and Concrete

S.C. Seetharam[1], D. Jacques[1]
[1]Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB ...

Remote Sensing of Electromagnetically Penetrable Objects: Landmine and IED Detection

R. Eze [1], G. Sivulka [2], ,
[1] City University of New York - LaGuardia Community College, Long Island City, NY, USA
[2] Regis High School, New York, NY, USA

The detection, characterization, and classification of underground environmental hazardous objects [mines, IEDs, and other unexploded military ...

Calibration of a Geothermal Energy Pile Model - new

R. Caulk[1], J. McCartney[2], E. Ghazanfari[1]
[1]University of Vermont, Burlington, VT, USA
[2]University of Colorado, Boulder, CO, USA

In this study, a model of in-situ geothermal energy piles was constructed using COMSOL Multiphysics® software. Geothermal energy piles serve two ...

Submarine Gas Hydrate Reservoir Simulations - A Gas/Liquid Fluid Flow Model for Gas Hydrate Containing Sediments - new

S. Schlüter[1], T. Hennig[1], G. Janicki[1], G. Deerberg[1]
[1]Fraunhofer UMSICHT, Oberhausen, Germany

In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2) from fossil fuel consumption. This ...

Finite Element-Based Characterization of Viscoelastic Materials

X. Song [1], S. Dircks [1], D. Mirosnikov [1], B. Lassen [2],
[1] Mads Clausen Institute, SDU, Sønderborg, Denmark
[2] DONG Energy, Fredericia, Denmark

The objective of this study is to acquire a full characterization of a hyper-elastic material. The process is realized by performing a Dynamic ...

Two-Phase Flow Models of Gas Generation and Transport in Geological Formations

O. Silva [1]
[1] Amphos 21 Consulting S.L. - iMaGe Consortium, Barcelona, Spain

Gas generation and transport through porous media is a process common to many field applications such as radioactive waste and underground gas storage. ...

Poroelasticity Benchmarking for FEM on Analytical Solutions

E. Holzbecher[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

We examine the poroelastics mode, which couples hydraulics and mechanics by some basic benchmarks. For cases with analytical solutions we check the accuracy for changing meshes and calculate the convergence rate.

The Use of COMSOL Multiphysics® Software to Explore Flooding and Rising Dampness Problems Related to Cultural Heritage

H.L. Schellen [1], A.W.M. van Schijndel [1],
[1] Eindhoven University of Technology, Eindhoven, Netherlands

In The Netherlands rising dampness problems due to flooding of rivers and high groundwater levels form an essential treat for monumental buildings and ...

Simulating Hydraulic Fracturing and Contaminant Transport with MATLAB® and COMSOL Multiphysics® Software

D. W. Pepper [1], E. Nabizadeh [1], J. Waters [2],
[1] University of Nevada Las Vegas, Las Vegas, NV, USA
[2] Los Alamos National Laboratory, Los Alamos, NM, USA

Hydraulic fracturing, or fracking, is a technique used to extract oil and gas in shale rock. A mixture of water, sand, and chemicals are pumped into ...