了解多物理场仿真在基础研究和产品设计中的应用

各个行业的工程师和科研人员都在使用多物理场仿真来研发创新的产品设计和流程。他们在 COMSOL 用户年会上展示了丰富的技术论文和演示文稿,您可以从他们的研究成果中寻找灵感。

使用左侧【快速搜索】工具查找您感兴趣的研究,或按照应用领域进行筛选。


查看 COMSOL 用户年会 2020 论文

MEMS and Nanotechnologyx

A Methodology For The Simulation Of MEMS Spiral Inductances Used As Magnetic Sensors

S. Druart, D. Flandre, and L.A. Francis
Université catholique de Louvain - ICTEAM, Louvain-la-Neuve, Belgium

In this paper, a methodology to simulate the electric behavior of spiral inductances is presented and ... 扩展阅读

Thermally Induced-Noise Reduction Using an Electrostatic Force Feedback

H. Lee, and J.V. Clark
Purdue University, West Lafayette, IN, USA

In this paper we present a method to mitigate the effect of thermally-induced noise in Micro-Electro ... 扩展阅读

The 3D Mixed-Dimensional Quench Model of a High Aspect Ratio High Temperature Superconducting Coated Conductor Tape

W.K. Chan[1,2], J. Schwartz[2], P. Masson[3], and C. Luongo[4]
[1]FAMU-FSU College of Engineering, Tallahassee, FL, USA
[2]North Carolina State University, Raleigh, NC, USA
[3]Advanced Magnet Lab, Palm Bay, FL, USA
[4]ITER Organization/Magnet Division, Saint Paul-lez-Durance, France

A successful development of an effective quench detection and protection method for a high temperature ... 扩展阅读

Design and Optimization of an All Optically Driven Phase Correction MEMS Deformable Mirror Device using Finite Element Analysis

V. Mathur[1], K. Anglin[1], V.S. Prasher[1], K. Termkoa[1], S.R. Vangala[1], X. Qian[1], J. Sherwood[1], W.D. Goodhue[1], B. Haji-Saeed[2], and J. Khoury[2]

[1]Photonics Center, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
[2]Air Force Research Laboratory/Sensors Directorate, Hanscom Air Force Base, Massachusetts, USA

Optically addressable MEMS mirrors are required for future high density adaptive optics array systems. We ... 扩展阅读

Optimization of Carbon Nanotube Field Emission Arrays

B. L. Crossley[1], M. Kossler[1], P.J. Collins[1], R. A. Coutu Jr.[1], and L. A. Starman[1]

[1]Air Force Institute of Technology, Wright-Patterson AFB, Ohio, USA

Carbon nanotubes (CNTs) have been proven experimentally to be well suited for field emission applications. An ... 扩展阅读

The Fabrication of a New Actuator Based on the Flexoelectric Effect

S. Baskaran[1], S. Thiruvannamalai[1], N. Ramachandran[1], F.M. Sebastian[1], and J.Y. Fu[1]
[1]State University of New York at Buffalo, Buffalo, New York, USA

This paper presents a novel methodology towards the design, analysis, and the fabrication process involved in ... 扩展阅读

Multiphysics Simulation of the Effect of Sensing and Spacer Layers on SAW Velocity

P. Zheng[1,4], D.W. Greve[2,4], and I.J. Oppenheim[3,4]

[1]Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
[2]Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
[3]Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
[4]National Energy Technology Laboratory, Pittsburgh, Pennsylvania, USA

Surface acoustic wave gas sensors use a chemically sensitive resistive layer to detect gas concentration. The ... 扩展阅读

The Origin of Mass-change Sensitivity within Multi-layered, Non-uniform, Piezoelectrically-actuated Millimeter-sized Cantilever (PEMC) Biosensors: Vibrational Analysis through Experiment and Finite Element Modeling (FEM)

B.N. Johnson[1], and R. Mutharasan[1]

[1]Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA

A 3D finite element model (FEM) of the PEMC sensor was developed to characterize the modes of vibration that ... 扩展阅读

Nanoscale Heat Transfer using Phonon Boltzmann Transport Equation

S. Sihn[1,2], and A.K. Roy[2]

[1]Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
[2]University of Dayton Research Institute, Dayton, Ohio, USA

COMSOL Multiphysics was used to solve a phonon Boltzmann transport equation (BTE) for nanoscale heat ... 扩展阅读

COMSOL Multiphysics Modeling of Rotational Resonant MEMS Sensors with Electrothermal Drive

S. Nelson[1], and M. Guvench[1]
[1]University of Southern Maine, Gorham, Maine, USA

COMSOL Multiphysics is employed to model, simulate and predict the performance of a high Q, in-plane ... 扩展阅读