“案例下载”页面提供丰富的 COMSOL Multiphysics® 教学案例和 App 演示文件,涉及电气、结构、声学、流体、传热和化工等各个学科领域。欢迎下载这些教学案例或 App 演示文件及其随附的操作说明,将其作为您建模仿真工作的绝佳起点。
您可以使用左侧的【快速搜索】工具查找与您的专业领域相关的案例模型和仿真 App。请注意,此处提供的许多案例也可以通过 COMSOL Multiphysics® 软件内置的“案例库”进行访问,该选项位于软件的文件 菜单中。
中文 带有此标签的案例包含中文 PDF 文档。
在使用线性化对流声接口求解问题时,确定声学特征模态是一项具有挑战性的任务。求解结果通常会返回多个非声学涡度和熵模态。它们是高阻尼波,不以声速传播,而是以对流速度传播。 本教学模型演示如何使用“线性纳维-斯托克斯 ... 扩展阅读
在所有使用流体来输送材料或能量的情况下,确定运动流体的速度非常重要。在使用传播时间法确定流速时,超声波信号在管道中的主流上传输,以非侵入方式确定其速度。在与主流成一定角度的方向上传输信号的情况下 ... 扩展阅读
阻抗管用于估算各种样品(例如用于隔音的多孔材料层)的表面阻抗。该模型显示了如何根据两个测量麦克风的压力来估算 Johnson-Champoux-Allard 模型的五个材料参数 ... 扩展阅读
这一箱式扬声器施加了一个标称驱动电压并抽取得到随频率变化的声压级。驱动器的电磁属性由“扬声器驱动器”模型提供(“AC/DC 模块”中有此模型)。本例使用“声-壳相互作用,频域”多物理场接口,因此需要“结构力学模块”。 扩展阅读
变速箱用于将动力从发动机传递到其关联的车轮或齿轮。这个过程可能导致噪声辐射到周围环境,这是因为在将动力从一个轴传递到另一个轴时,轴承和外壳上传递了不需要的侧向力和轴向力,另一个原因是柔性部件(例如齿轮啮合、轴承和外壳 ... 扩展阅读
微流体系统制造的最新进展需要处理活细胞和其他微粒,还需要它们之间的混合。例如,所有这些都可以利用声辐射力和来自流动的黏滞曳力来实现。 流动:由于纳维-斯托克斯方程中的非线性项,流动的谐波扰动将导致净时均流动,称为声流 ... 扩展阅读
本模型分析微镜在空气中的工作情况以及热黏性阻尼对振动响应的影响,其中包含结构中的热损失和热黏性声学现象。该模型使用热黏性-热弹性边界 多物理场耦合将热弹性力学 多物理场接口耦合到热黏性声学,频域。 扩展阅读
本例阐述手动变速箱车辆 5 速同步啮合变速箱的振动和噪声建模;执行瞬态多体分析来计算指定发动机转速和外部载荷下的变速箱振动;并将变速箱壳的法向加速度转换为频域,用作噪声源。然后执行声学分析,以计算近场 ... 扩展阅读
此模型分析压电微机电系统 (MEMS) 扬声器。该扬声器由四个三角形膜组成,其中使用一层锆钛酸铅 (PZT) 材料,并且硅层顶部有两个电极作为执行器。三角形膜由狭窄的气隙隔开,从而使膜具有较大的挠度 ... 扩展阅读
