Application Gallery

COMSOL Multiphysics 案例库模型来自广泛的应用领域,包括电气、机械、流体和化工等行业。您可以下载现成即可使用的模型,以及详细的建模步骤说明,作为您建模工作的起点。请使用“快速搜索”查找与您的专业领域相关的模型,并登录或创建一个与有效的 COMSOL 许可证相关联的 COMSOL Access 帐户,下载模型文件。

Water Purification Reactor

Water purification for turning natural water into drinking water is a process constituted of several steps. At least one step must be a disinfectant step. One way to achieve efficient disinfection in an environmentally friendly way is to use ozone. A typical ozone purification reactor is about 40 m long and resembles a maze with partial walls or baffles that divide the space into room-sized ...

Syngas Combustion in a Round-Jet Burner

The model simulates non-premixed turbulent combustion of syngas (synthesis gas) in a simple round-jet burner. Syngas is a gas mixture, primarily composed of hydrogen, carbon monoxide and carbon dioxide. The name syngas relates to its use in creating synthetic natural gas. In the model, syngas is fed from a pipe into an open region with a slow co-flow of air. Upon exiting the pipe, the syngas ...

Bending Pipe

This model studies the fluid flow through a bending pipe in 3D for the Reynolds number 300 000. Because of the high Reynolds number, the k-epsilon and the k-omega turbulence models are used. Calculations with and without corner smoothing are performed. The results are compared with experimental data.

Fluid Damper

Fluid dampers are used in military devices for shock isolation and in civil structures for suppressing earthquake-induced shaking and wind-induced vibrations, among many other applications. Fluid dampers work by dissipating the mechanical energy into heat. This model shows the phenomenon of viscous heating and consequent temperature increase in a fluid damper. Viscous heating is also important in ...

Non-Newtonian Flow

This model shows the influence of shear rate dependent viscosity on the flow of a linear polystyrene solution. For this type of flow, you can use the Carreau viscosity model. Due to rotational symmetry, it is possible to reduce the model dimensions from 3D to axisymmetric 2D.

The Magnus Effect

The Magnus effect explains the curl that soccer players can give the ball, resulting in the enjoyable goals that we can see in every World Cup™. This model looks at the Magnus effect in the laminar and turbulent flow regimes for transient and stationary flows. It also discusses the simulation results and relates them to experimental measurements on soccer balls found in the literature.

Turbulent Residence Time in a Baffled Reactor

Large-scale reactors are usually made from stationary parts, often involving baffles. They make use of the baffled- imposed turbulence to provide mixing within the reactor. Yet, such reactors need to be optimized as too much baffling can create unnecessary turbulence and pressure drops. Too few can lead to short-circuiting and dead zones. An indication of residence time is a pointer toward ...

Swirl Flow Around a Rotating Disk

Swirl flow is an application that involves steady rotational flow around an axis. Rather than modeling this process in 3D, COMSOL Multiphysics provides a 2D axisymmetric interface where the flow in the rotational direction is still included in the equations. This example shows the effect of a rotating cylinder on the flow in a container. Such applications are often used in chemical kinetic ...

Separation Through Electrocoalescence

Applying an electric field across a suspension of immiscible liquids may stimulate droplets of the same phase to coalesce. The method known as electrocoalescence has important applications, for instance, in the separation of oil from water. To model electrocoalescence, you need to solve the Navier-Stokes equations, describing the fluid motion, as well as track the interfaces between the ...

Turbulent Mixing of a Trace Species

This tutorial model demonstrates how mixing can be visualized in a stirred vessel by seeding a trace species from a point. The flow is modeled using the Rotating Machinery, Fluid Flow physics which solves Navier-Stokes equations on geometries with rotating parts, for example impellers. The transport of the trace species is modeled using the Transport of Diluted Species physics.

Quick Search