Quick Search

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

Coupled Structural and Magnetic Models: Linear Magnetostriction in COMSOL

J. Slaughter[1]
[1]Etrema Products, Inc., Ames, Iowa, USA

Accurate modeling of magnetostrictive materials and devices requires coupling of electrical, magnetic, mechanical, and possibly acoustic domains. There are relatively few finite  element software packages that include all these physical models and even fewer that include magnetostrictive models. Comsol Multiphysics was used to create linear magnetostrictive models with fully coupled physics. ...

Analysis of Forces acting on Superparamagnetic beads in fluid medium in Gradient Magnetic Fields

U. Veeramachaneni[1], and R.L. Carroll[1]

[1]Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA

Superparamagnetic micro beads offer some  attractive applications in biological and biomedical fields. Some of the important applications include manipulation and separation of cells, isolation of specific cells, active drug delivery, magnetic cell separation, separation of proteins, and application of mechanical forces to cells, etc. A COMSOL Multiphysics model is developed in 2D ...

The Fabrication of a New Actuator Based on the Flexoelectric Effect

S. Baskaran[1], S. Thiruvannamalai[1], N. Ramachandran[1], F.M. Sebastian[1], and J.Y. Fu[1]
[1]State University of New York at Buffalo, Buffalo, New York, USA

This paper presents a novel methodology towards the design, analysis, and the fabrication process involved in developing a cost effective method to create a piezoelectric actuator by means of the flexoelectric effect. The basic physical equations of the flexoelectric effect and the qualitative analysis of the flexoelectric actuator are done using COMSOL Multiphysics. This effect is used to align ...

Two-Dimensional COMSOL Simulation of Heavy-Oil Recovery by Electromagnetic Heating

M. Carrizales[1], and L.W. Lake[1]

[1]The University of Texas at Austin, University Station, Austin, Texas, USA

Introducing heat to the formation has proven to be an effective way of lowering the oil viscosity of heavy oils by raising the temperature in the formation. The application of electrical energy has gained more interest during the last decade because it offers fewer restrictions for its successful application compared to the conventional steam flooding methods. Although this recovery technique ...

Study of Fluid and Mass Adsorption Model in the QCM-D Sensor for Characterization of Biomolecular Interaction

H.J. Kwon[1], C.K. Bradfield[1], B.T. Dodge[1], and G.S. Agoki[1]
[1]Department of Engineering and Computer Science, Andrews University, Berrien Springs, Michigan, USA

Increasing attention has been paid to application of the quartz crystal microbalance with dissipation (QCM-D) sensor for monitoring biomolecular interactions. This paper focuses on a practical application of protein-protein binding affinity measurement at low concentrations and minimal sample sizes (50-200 μl of 20-200 nM), which results in low signal measurement. A model simulating fluid ...

Modeling a 3D Eddy Current Problem Using the Weak Formulation of the Convective A-phi Steady State Method

J. Bird[1]

[1]University of North Carolina, Charlotte, North Carolina, USA

A 3D model of a magnetic rotor both rotating and translationally moving at high-speed over a conductive guideway is modeled in steady-state using the convective A*-Φ formulation. The presence of the magnetic rotor (source field) is incorporated into the formulation via the boundary conditions. This type of problem is difficult to model using existing commercial packaged electromagnetic ...

Numerical Study of the Electrical Properties of Insulating Thin Films Deposited on a Conductive Substrate

R.A.Gerhardt[1], and S. Kumar[1]
[1]School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA

Parametric finite element simulations were performed to study the effect of film thickness, and electrode size on the different impedance parameters for insulating thin films deposited on a conductive substrate. COMSOL Multiphysics® was used to solve the quasi-static form of Maxwell’s electromagnetic equations in time harmonic mode. Several types of 2D models (linear and axisymmetric) ...

An Analysis of Heat Conduction with Change of Phase with Application to the Solidification of Copper

J. Michalski[1], and E. Gutirrez-Miravete[2]
[2]Rensselaer at Hartford, Hartford, Connecticut, US

The goal of this study was to determine the possibility of using the finite element in COMSOL Multiphysics program to obtain a high accuracy solution to a moving boundary problem, specifically, the solidification of copper. A one-dimensional geometry in Cartesian coordinates was used to investigate the solidification of initially liquid copper from a chilled wall maintained at fixed temperature. ...

The Use of CFD Simulations in Learning Fluid Mechanics at the Undergraduate Level

Marc K. Smith
Professor of Mechanical Engineering, Georgia Institute of Technology

Simple, accurate CFD simulations using COMSOL Multiphysics are used in a senior-level undergraduate course as a means to explore a number of fluid flows with the intent of developing a deep understanding of the underlying fluid mechanical mechanisms involved in the flows. Students also learn about the finite element method, how to properly pose the underlying mathematical model for the fluid ...

Multiphysics Simulation of Isoelectric Point Separation of Proteins Using Non-Gel Microfluidic System

A. Contractor[1], N. Xue[2], J.B.Lee[2], A. Balasubramanian[1], and G. Hughes[1]
[1]Lynntech, Inc., College Station, Texas, USA
[2]Micro Nano Devices and Systems (MiNDS) Laboratory, Department of Electrical Engineering, University of Texas at Dallas, Texas, USA

A portable device that can identify protein and peptides real time in complex biological systems such as human bodily fluids reliably and accurately is in high demand to properly diagnose and treat medical conditions. Lynntech has developed an innovative Polydimethylsiloxane (PDMS) based microfluidics system with a unique design utilizing multi-channel inlets and outlets for isoelectric point ...