科技论文和演示页面包括了 COMSOL 全球用户年会上所有的用户演示文稿。这些演示文稿介绍了 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计,研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。您可以使用“快速搜索”来查找与您研究领域相关的演示文稿。

Newtonian and Non-Newtonian Blood Flow over a Backward-Facing Step: Steady-State Simulation

M.W. Siebert[1], and P.S. Fodor[1]
[1]Physics Department, Cleveland State University, Cleveland, Ohio, USA

In this work, the fluid flow over a 2D backward-facing step is analyzed in order to provide a case study for the use of different models for the blood ...

Multiphysics Topology Optimization of Heat Transfer and Fluid Flow Systems

E. Dede[1]
[1]Toyota Research Institute of North America, Ann Arbor, Michigan, USA

This paper is focused on topology optimization of heat transfer and fluid flow systems for multiphysics objectives. Specifically, COMSOL Multiphysics ...

Solid-Liquid Phase Change Simulation Applied to a Cylindrical Latent Heat Energy Storage System

D. Groulx[1], and W. Ogoh[1]

[1]Mechanical Engineering Department, Dalhousie University, Halifax, Nova Scotia, Canada

One way of storing thermal energy is through the use of latent heat energy storage systems. One such system, composed of a cylindrical container filled ...

Multiphysics Simulation of a Packed Bed Reactor

A.E. Varela[1], and J.C. García[1]

[1]University of Carabobo, Valencia, Venezuela

Most reactor designs are based on pseudo homogeneous models. This paper studies the COMSOL simulation of a packed bed reactor using a 2-D heterogeneous ...

Nanoscale Heat Transfer using Phonon Boltzmann Transport Equation

S. Sihn[1,2], and A.K. Roy[2]

[1]Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
[2]University of Dayton Research Institute, Dayton, Ohio, USA

COMSOL Multiphysics was used to solve a phonon Boltzmann transport equation (BTE) for nanoscale heat transport problems. One dimensional steady-state and transient BTE problems were successfully solved based on finite element and discrete ordinate methods for spatial and angular discretizations, respectively, by utilizing the built-in feature of the COMSOL, Coefficient Form of PDE.

Mathematical Modeling of a Lithium Ion Battery

R. E. White[1], and Long Cai[2]
[1]R.E. White & Associates LLC, Columbia, South Carolina, USA
[2]Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA

The existing lithium ion battery model in COMSOL’s Multiphysics  software is extended to include the thermal effects. The thermal behavior ...

Coupled Structural and Magnetic Models: Linear Magnetostriction in COMSOL

J. Slaughter[1]
[1]Etrema Products, Inc., Ames, Iowa, USA

Accurate modeling of magnetostrictive materials and devices requires coupling of electrical, magnetic, mechanical, and possibly acoustic domains. There ...

Two-Dimensional COMSOL Simulation of Heavy-Oil Recovery by Electromagnetic Heating

M. Carrizales[1], and L.W. Lake[1]

[1]The University of Texas at Austin, University Station, Austin, Texas, USA

Introducing heat to the formation has proven to be an effective way of lowering the oil viscosity of heavy oils by raising the temperature in the ...

Model of a Filament Assisted CVD Reactor

J. Brcka[1]

[1]TEL US Holdings, Inc., Technology Development Center, Albany, New York, USA

In this presentation we are dealing with the computational fluid model of a Filament Assisted Chemical Vapor Deposition (FACVD) reactor. Proposed ...

Modeling Optical Nanoantenna Arrays with COMSOL Multiphysics

Z. Liu[1], X. Ni[1], and A. Kildishev[1]
[1]School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA

Optical nanoantennas have been of great interest recently due to their ability to support a highly efficient, localized surface plasmon resonance and ...

1 - 10 of 129 First | < Previous | Next > | Last