了解多物理场仿真在基础研究和产品设计中的应用

各个行业的工程师和科研人员都在使用多物理场仿真来研发创新的产品设计和流程。他们在 COMSOL 用户年会上展示了丰富的技术论文和演示文稿,您可以从他们的研究成果中寻找灵感。

使用左侧【快速搜索】工具查找您感兴趣的研究,或按照应用领域进行筛选。


查看 COMSOL 用户年会 2020 论文

MEMS and Nanotechnologyx

Modelling of SiC Chemical Vapour Infiltration Process Assisted by Microwave Heating

G. Maizza[1] and M. Longhin[1]
[1]Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

The excessive presence of residual SiC matrix inter-fiber pores is often the main cause for the very poor ... 扩展阅读

Dynamic Observation of Magnetic Particles in Continuous Flow Devices by Tunneling Magnetoresistance Sensors

A. Weddemann[1], A. Auge[1], F. Wittbracht[1], C. Albon[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

Dynamic measurement of magnetic particles in continuous flow devices is made very difficult by the ... 扩展阅读

Motion of Uncharged Particles in Electroosmotic Flow through a Wavy Cylindrical Channel

N. Qudus[1], T. Mahbub[1], S. A. Ali[1], and M. Shajahan[1]
[1] Bangladesh University of Engineering and Technology, Dhaka Bangladesh

A finite element model is employed to describe the electric potential distribution and electroosmotic flow ... 扩展阅读

Numerical Investigation of Electroosmotic Flow in Convergent Divergent Micronozzle

V. Gnanaraj[1], V. Mohan[1], and B. Vellaikannan[1]
[1]Thiagarajar College of Engineering, Madurai, Tamilnadu, India

A fundamental understanding of the transport phenomena in microfluidic channels is critical for systematic ... 扩展阅读

FEM Study on Contactless Excitation of Acoustic Waves in SAWDevices

A. K. Namdeo[1], N. Ramakrishna[2], H. B. Nemade[1,2], and R. P. Palathinkal[1]

[1] Department of Electronics and Communication Engineering, Indian Institute of Technology Guwahati, Assam, India
[2] Centre for Nanotechnology. Indian Institute of Technology Guwahati, Assam, India

In this paper a finite element method(FEM) study of a surface acoustic wave (SAW)device excited by ... 扩展阅读

Microfluidic Separation System for Magnetic Beads

F. Wittbrach, A. Weddemann, A. Auge, and A. Hütten
Department of Physics, Bielefeld University, Germany

It is possible to control the motion of magnetic beads using a combination of hydrodynamic and ... 扩展阅读

Interfacing Continuum and Discrete Methods: Convective Diffusion of Microparticles and Chemical Species in Microsystems

J. Berthier
CEA-LETI, Department of Biotechnology, Grenoble, France

Convective transport of macromolecules or micro and nanoparticles in microsystems are usually predicted by ... 扩展阅读

Design for Reliability and Robustness through Probabilistic Methods in COMSOL Multiphysics with OptiY

T.-Q. Pham[1], H. Neubert[2], and A. Kamusella[2]
[1]OptiY e.K., Aschaffenburg, Germany
[2]Institute of Electro-Mechanical and Electronic Design, TU Dresden, Germany

One challenge in designing micro-electromechanical systems (MEMS) is considering the variability of design ... 扩展阅读

Mixing and Residence Time Distribution Studies in Microchannels with Floor Herringbone Structures

A. Cantu-Perez, S. Ping Kee, and A. Gavriilidis
University College London, Department of Chemical Engineering, Torrington Place, London, UK

The mixing characteristics and residence time distributions (RTDs) of a staggered herringbone microchannel ... 扩展阅读

Electro-Thermal Modeling of High Power Light Emitting Diodes Based on Experimental Device Characterization  

T. Lopez[1], and T. Margalith[2]

[1]Philips Research, Aachen, Germany
[2]Philips Lumileds Lighting Company, San Jose, CA, USA

This paper presents a 3D finite element model in COMSOL for the electro-thermal analysis of high power light ... 扩展阅读